• Title/Summary/Keyword: industrial effluents

Search Result 105, Processing Time 0.024 seconds

Endocrine Disrupting Effects of the Industrial Wastewater Effluents Discharged from the Treatment Plant (산업폐수처리장 방류수의 내분비계 장애작용 평가)

  • Oh Seung-Min;Kim Gi-Suh;Ryu Byung Taek;Jang Hyung Seog;Lee Hee-Sung;Chung Kyu-Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.375-382
    • /
    • 2004
  • This study was designed to investigate potential endocrine disrupting effects of several industrial wastewater effluents discharged from cosmetic, plaiting, paint, textile industry using EROD bioassay and E-Screen assay. The results of E-screen assay showed that textile industrial wastewater could act as a full agonist and cosmetics and plaiting industrial wastewater could act as a partial agonist. On the contrary, the wastewater discharged from paint industry did not show any estrogenic effect. Estrogenic activity in the effluents of cosmetic and paint industrial wastewater was lower than that in the influents indicating that the wastewater treatment process minimized the effects of discharges on water quality. Despite of these results, it was recognized that wastewater treatment was not always minimize toxic impact. In this study, increased estrogenic effect was observed in the effluents of plating and textile wastewater, and EROD activity was increased in the effluents of cosmetic and plating wastewater.

Interaction of industrial effluents and bentonite: a comparative study of their physico-chemical and geotechnical characteristics

  • Murugaiyan, V.;Saravanane, R.;Sundararajan, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.291-306
    • /
    • 2009
  • One-dimensional soil-column studies were carried out to understand the interaction of three industrial effluents namely amino acid ('highly acidic'), surfactant ('highly organic') and pharmaceutical ('organic and toxic') on the physicochemical behavior, index properties and shear strength of bentonite due to artificial contamination extending to nearly 300 days. Changes in inorganic and organic pollutants present in the effluents due to the interaction of the above effluents and soil were assessed to understand the physico-chemical behaviour. Batch and continuous modes of operation, 8 hrs and 16 hrs Hydraulic Retention Time [HRT] and 25%, 50% concentrations of effluents, were the parameters considered. Amino acid, surfactant and pharmaceutical effluents have shown a high variation in pH (7 to 8) after artificial contamination on bentonite that is their original characteristics of the above effluents have been completely reversed. Further, it is found that the shear strength of bentonite has reduced by about 20%, and with respect to liquid limit and plastic limit shows an increasing trend with time within the period of contamination.

Basic study on Eco-industrial Park utilizing thermal effluents as heat source (온배수를 열원으로 활용하는 생태산업단지 조성에 관한 기초 연구)

  • KIM, Dong-Kyu;KANG, Dae-Seok;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.3
    • /
    • pp.400-408
    • /
    • 2009
  • The purpose of this study is to know the concept of Eco-industrial Park and How to use the thermal effluents from power plants. Thermal effluents, which use sea water for cooling, from power plants have been discharged with about $6{\sim}7^{\circ}C$ higher temperature than near sea area. Therefore, it could effect on the marine ecosystem as a external pressure factor that increase the artificial thermal load in near sea area. The applications of thermal effluents had been surveyed through the several internal and external cases for utilizing heat sources and reducing the thermal load. As the precedence research for applying, the amount of heat sources of thermal effluents was evaluated. When the thermal effluents was fully applied in heat sources and available heat, assume that use heating season by 12 hours a day of demanded available heat, it was possible to calculate total 198 Tcal of energy saving.

Applicability of the lenten's Reagent Oxidation to Biological Fixed-Film Process for Reuse of Effluents from the Petrochemical Wastewster Effluent Treatment Plant (석유화학폐수 처리장 방류수의 재이용을 위한 고정생물막 공정에서 Fenton 산화전처리의 적응가능성)

  • Lee, Kyu-Hoon;Kim, Mi-Hwa;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.115-115
    • /
    • 1995
  • Reuse of industrial effluents through the cooling systems in a petrochemical complex was described. The partial oxidation of the effluents from the biological treatment plant was examined, using Fenton''s reagent as a pretreatment step prior to a next treatment of the effluents. Next tertiary treatment using fixed-film reactor resulted in marked reductions in COD and suspended solids. The continuous fixed-film process with Fenton oxidation pretreatment showed a 23% increase in the COD removal efficiency when compared to that without pretreatment of Fenton oxidation under the volumetric organic loading rate of 0.1 kg COD/m3/day. The Fenton oxidation treatment seemed to be a possible method for tertiary biological treatment to reduce the residual toxicity with the enhanced biodegradation of the effluents.

Applicability of the lenten류s Reagent Oxidation to Biological Fixed-Film Process for Reuse of Effluents from the Petrochemical Wastewster Effluent Treatment Plant (석유화학폐수 처리장 방류수의 재이용을 위한 고정생물막 공정에서 Fenton 산화전처리의 적응가능성)

  • Lee, Kyu-Hoon;Kim, Mi-Hwa;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.501-508
    • /
    • 1995
  • Reuse of industrial effluents through the cooling systems in a petrochemical complex was described. The partial oxidation of the effluents from the biological treatment plant was examined, using Fenton's reagent as a pretreatment step prior to a next treatment of the effluents. Next tertiary treatment using fixed-film reactor resulted in marked reductions in COD and suspended solids. The continuous fixed-film process with Fenton oxidation pretreatment showed a 23% increase in the COD removal efficiency when compared to that without pretreatment of Fenton oxidation under the volumetric organic loading rate of 0.1 kg COD/m3/day. The Fenton oxidation treatment seemed to be a possible method for tertiary biological treatment to reduce the residual toxicity with the enhanced biodegradation of the effluents.

  • PDF

Reuses Of Wash Water Effluents Of The Ion-Exchanger Units Of Water Demineralization Plant For Economic And Environmental Benefits

  • Miah, Raisuddin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-806
    • /
    • 1995
  • In industrial field, a large volume of regenerants (acid and caustic soda) and their washing effluents are regularly disposed off from the water demineralization plant during regeneration of the ion-exchanger units. Of these waste effluents, a part of the wash water discharged from the single bed Anion and Mixed Bed units can be utilized at a certain stage of their washing cycles when its conductivity is fallen down and becomes considerably less than that of the input raw water. The main aim of this specific waste effluent utilization is to dilute the TDS concentration of the input raw water (fed into the single bed ion-exchanger units) by blending. The achievement is the increase of the longevity of the production cycles of the I.E. units along with the improvement of the production quality and decrease of the regeneration frequencies. As a result, regenerant consumption would be saved because of the reduction of ionic load in feed water which will ultimately reduce the water purification cost. At the same time, the environment pollution will also be protected to a considerable extent. This operational measure is quite effective and useful specially where high TDS water is demineralized only by single bed ion-exchangers. In such case, the water treatment plant is very often found to suffer from both production quality and quantity in addition to carrying out of random and restless regenerations. Proper reuses of the aforesaid wash water effluents of the Anion and MB units excellently minimizes the difficulties experienced in practice. This paper contains the utilities and techniques of reuses of the different kinds of waste effluents of the industrial water treatment plant in addition to the specific reuses of the post-regeneration wash waters of the Anion and MB ion-exchanger units.

  • PDF

Ecotoxicity Assessment of Industrial Effluent in Korea (산업폐수 방류수의 생태독성 평가)

  • Oh, Kyung Taek;Kim, Ji Won;Kim, Woo Kun;Lee, Soon Ae;Yun, Hong Gil;Lee, Sung Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Ecotoxicity assessments of 90 selected effluents of 22 industry types from 2002 to 2004 in Korea were evaluated by a toxic battery of bioassay test using fish Oryzias latipes, invertebrate Daphnia magna, algae Selenastrum capricornutum and bacteria Vibrio fischeri with the physicochemical measurement items and permit concentrations on the present Water Quality Conservation Act in Korea. Total toxic unit (${\Sigma}TU$) of 8 industry types of 22 industry types by the toxic battery appeared in order of the value site as follows; Pigment Dye Manufacturing (${\Sigma}TU$ 217.1) > Textile and Dye (${\Sigma}TU$ 39.3) > Semiconductor Electronic Manufacturing (Small) (${\Sigma}TU$ 25.6) > Wastewater and Sewage Treatment Plants (${\Sigma}TU$ 25.4) > Coating (${\Sigma}TU$ 23.8) > Leather Skin Manufacturing (${\Sigma}TU$ 18.0) > Synthetic Resin Manufacturing (${\Sigma}TU$ 15.6) > Assemble Metal Manufacturing (${\Sigma}TU$ 10.7). Our results demonstrate that ecotoxicity assessment, by bioassay test, is effective and practical for industrial wastewater management for 90 selected effluents with the limitation of the physicochemical permit. Among 90 effluents, 9 samples failed physicochemical permit limitation and 81 passed it. In result of ecotoxicity assessment of 90 effluents by the toxic battery, 76 effluents exhibited ecotoxicity and the others did not. The physicochemical measurement items and permit concentrations on the present Water Quality Conservation Act in Korea were low related to the ecotoxicity value by the toxic battery and appeared limited for water quality management to water-ecosystem and environment-friendly management of water.

Evaluation on the Environmental and Social Value Awareness of the Heat Supply for the Horticultural Greenhouse using Thermal Effluents from Power Plant (화력발전소 온배수열 활용 시설하우스 열공급에 대한 환경 및 사회적 가치 인식 비교 분석)

  • Kim, Ga-Hee;Ahn, Cha-Soo;Um, Byung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.125-134
    • /
    • 2018
  • Recently, interest in alternative energy has been increasing to reduce greenhouse gas emissions and fossil fuel consumption in accordance with the United Nations Framework Convention on Climate Change(UNFCCC). Accordingly, there is a need to use waste heat that unused throughout industrial systems for lowering the concentration of energy on fossil fuels. In particular, government support projects for the energy recycling of agriculture and fisheries such as cultivation of tropical crops and aquaculture are being actively carried out by utilizing waste heat and thermal effluents caused from large-scale industrial complexes including power plants. The study was conducted on supplier (power plant), consumer (farmer) and stakeholders (constructor and local governments) of domestic demonstration areas using waste heat that is abandoned from the power plant in the form of thermal effluents. It investigated the overall improvement and feasibility of government funded projects through field interviews and questionnaire-type surveys. The results of this study are expected to provide basic directions for the operation of the project in terms of nationwide expansion and diffusion of the heat source supply project at horticultural greenhouse by utilizing the thermal effluents from power plant.

A Study on THMs Formation in Service Waters and Waste Waters at Kunsan (군산지역 용 . 폐수중의 THMs생성 및 배출에 관한 연구)

  • 황갑수;이영남;김강주;여성구;김진삼
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.4
    • /
    • pp.41-46
    • /
    • 2001
  • Trihalomethane(THMs) levels in drinking tap water, indoor swimming pool water and industrial effluent in Kunsan area were surveyed in this study. During experimental period, the monthly averages of THMs in drinking tap water from Keumkang wide-area supply ranged from 15$\mu\textrm{g}$/ι/to 50 $\mu\textrm{g}$ showing the highest level in summer. 3 indoor swimming pools showed the monthly average levels of THMs formation ranging from 8$\mu\textrm{g}$/ι/to 20$\mu\textrm{g}$/ι and the pool under public management seemed to maintain its water quality more stable than those under private management THMs concentrations in the effluents. discharged from 10 manufacturing companies, ranged from N.D. to 95$\mu\textrm{g}$/ι and it was estimated that the overall THMs level discharged front those manufacturing companies is not high, reflecting the traces recorded for most effluents. The composition ratios of individual THMs for industrial effluents showed a difference from those for drinking water and swimming pool water, along with their wide variations according to the company and relatively high composition ratios of Br substituents.

  • PDF

Comparison between Ecotoxicity using Daphnia magna and Physiochemical Analyses of Industrial Effluent (산업폐수에 대한 이화학적 분석과 물벼룩 생태독성의 비교)

  • Lee, Sun Hee;Lee, Hak Sung
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1269-1275
    • /
    • 2014
  • Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (${\Sigma}TU$) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ${\leq}$ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.