• Title/Summary/Keyword: industrial distributed control systems

Search Result 127, Processing Time 0.026 seconds

A Fault Analysis on AC Microgrid with Distributed Generations

  • Shin, Seong-Su;Oh, Joon-Seok;Jang, Su-Hyeong;Chae, Woo-Kyu;Park, Jong-Ho;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1600-1609
    • /
    • 2016
  • As the penetration of different types of renewable energy sources (RES) and energy storage systems (ESS) increases, the importance of stability in AC microgrid is being emphasized. Especially, RES and ESS which are operated using power electronics have difference in output characteristics according to control structures. When faults like single-line-to-ground fault or islanding operation occur, this means that a fault should be interpreted in different way. Therefore, it is necessary to analyze fault characteristics in AC microgrid in case of grid-connected mode and standalone mode. In this paper, the fault analysis for AC microgrid is carried out using PSCAD/EMTDC and an overvoltage problem and the countermeasures were proposed.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

Median Control Chart for Nonnormally Distributed Processes (비정규분포공정에서 메디안특수관리도 통용모형설정에 관한 실증적 연구(요약))

  • 신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.101-106
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\bar{X}$-chart, $\bar{X}$-chart, $\bar{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart $\bar{X}$-chart. which is the most widely used one in Kora, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the $\bar{X}$-chart; the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the $\bar{X}$-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based oh a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $\chi$$^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the proposed median chart and the $\bar{X}$ chart was also performed with these examples and the median chart turned out to be superior to the $\bar{X}$-chart.

  • PDF

Implementation of Slaving Data Processing Function for Mission Control System in Space Center (우주센터 발사통제시스템의 추적연동정보 처리기능 구현)

  • Choi, Yong-Tae;Ra, Sung-Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2014
  • In KSLV-I launch mission, real-time data from the tracking stations are acquired, processed and distributed by the Mission Control System to the user group who needed to monitor processed data for safety and flight monitoring purposes. The processed trajectory data by the mission control system is sent to each tracking system for target designation in case of tracking failure. Also, the processed data are used for decision making for flight termination when anomalies occur during flight of the launch vehicle. In this paper, we propose the processing mechanism of slaving data which plays a key role of launch vehicle tracking mission. The best position data is selected by predefined logic and current status after every available position data are acquired and pre-processed. And, the slaving data is distributed to each tracking stations through time delay is compensated by extrapolation. For the accurate processing, operation timing of every procesing modules are triggered by time-tick signal(25ms period) which is driven from UTC(Universial Time Coordinates) time. To evaluate the proposed method, we compared slaving data to the position data which received by tracking radar. The experiments show the average difference value is below 0.01 degree.

Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors (디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계)

  • 김용태;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

The Mold Close and Open Control of Injection Molding Machine Using Fuzzy Algorithm

  • Park, Jin-Hyun;Lee, Young-Kwan;Kim, Hun-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.575-579
    • /
    • 2005
  • In this paper, the development of an IMM(Injection Molding Machine) controller is discussed. Presently, the Mold Close and Open Control Method of a toggle-type IMM is open-loop control. Through the development, a PC based control system was built instead of an existing controller and a closed-loop control replaced the previous control method by using PC based PLC. To control the nonlinear system of toggle type clamping unit, a fuzzy PI control algorithm was selected and it was programmed by an IL(Instruction List) and a LD(Ladder Diagram) on a PC based PLC. The application of fuzzy algorithm as the control method was also considered to change a control object like a mold replacement or an additional apparatus. For the development of an IMM controller, PC based PLC of PCI card type, distributed I/O modules with CANopen and Industrial PC and HMI (Human Machine Interface) software were used.

  • PDF

Requirements for Workflow Management Systems Supporting CITIS (CITIS 지원 워크플로우 관리 시스템 개발 요구사항)

  • Bae, Joon-Soo;Kim, Dong-Soo;Jeong, Seok-Chan;Bae, Hye-Rim;Seo, Yeong-Ho;Hur, Won-Chang;Kim, Yeong-Ho;Kang, Suk-Ho
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.63-73
    • /
    • 1997
  • This paper presents requirements for workflow management systems supporting CITIS. We propose an architecture of global workflow management system which aims at supporting external workflow among different organizations rather than internal one. The architecture consists of five key elements, that is process definition language, process graphic design tool, control engine, status monitoring tool, and interface models. For each of these elements, implementation requirements are presented and its major functions are described. A key concept to the CITIS standard is the integration of disparate systems in distributed environment. This leads us to place a special emphasis on the interface models that can enhance the interoperability between externally participating workflow systems. Two interface models for the global workflow management system are explained. CORBA, the most widely accepted standard for distributed object management, can be adopted to facilitate the integration. World Wide Web can be used for the underlying platform on which information is exchanged and the status of processes instances is monitored. The workflow management system can provide a ready and easy access to and management of the data for CALS environments.

  • PDF

가변교통상황 제어를 위한 분산교통신호 제어 에이전트의 설계

  • 박길철;구하성;임한규
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1998.10a
    • /
    • pp.777-784
    • /
    • 1998
  • 본 논문은 시간 혹은 주변의 상황에 따라 가변적으로 변화하는 교통량을 스스로 파악하여 효과적으로 제어할 수 있는 에이젼트를 설게하고 가상 실험을 하여 기존의 고정식 신호등과 비교 평가하였다. 대부분의 교통 신호등은 교통량의 변화에 능동적으로 대응하지 못하고 미리 설정해 놓은 시간에 따라 각 방향의 신호를 주고 있기 때문에 교통량의 변화에 적절히 대응하지 못하고 있다. 또한 급작스런 교통상황의 변화에 대응 할 수 없다. 이러한 문제점을 해결하기 위해 DTCA(Distributed Traffic Control Agent)가 설계되었다. DTCA는 교차로의 교통정보를 수집하여 신호등을 제어한는 정보로 활용하고, 인접 교통제어 에이젼트와 교신한면서 최적의 신호시간과 신호주기를 결정한다. DCTA는 시간대별, 요일별 교통과 통계를 수집, 분석한 데이터를 기초로 하고 현재 교통량을 동적으로 수집 그리고 주변의 상호제어 에이젼트와 정보를 교환하여 비정상적인 교통흐름을 대처할 수있다.

A Study of effect POP system in ERP system (전사적 자원계획에서 POP시스템에 역할에 관한 고찰)

  • 김동관
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.30-35
    • /
    • 1999
  • Recently, many companies want to accept and operate ERP(Enterprise Resource Planning) system in their fields ERP does not only include business, but also include finance, account, trade, personnel and BPR(Business Process Reengineering). Especially, it is necessary to have ERP system for companies which have lots of external businesses such as trade and communication sector. In modern society, the manufacture field faces on variable chances of Environment. For this situation, the application of Information technique is one of the main point maintain competitive power. The company should chose a proper method for their future and build Unified Information System on its suitable situation. Nowadays, Adjustment and application of technical method for Internet/Intranet and raised and more advanced Extranet gains its force at the moment. The Unification of ERP and POP system under the distributed environment like this will have a huge influence to us. In this subject, I will think about POP system for operating EPR system and improve its defects that can operate more effective sales, circulation, demand plan. Also, I suggest a proper POP system can handle seperated resources in each part of factory for a plan of shot period, order operating, factory inventory, process control.

  • PDF

Human Centered Robot for Mutual Interaction in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2005
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. It is desirable for a mobile robot to carry out human affinitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible. In order to follow a human, control law is derived from the assumption that a human and a mobile robot are connected with a virtual spring model. Input velocity to a mobile robot is generated on the basis of the elastic force from the virtual spring in this model. And its performance is verified by the computer simulation and the experiment.