• Title/Summary/Keyword: inducible resistance

Search Result 88, Processing Time 0.026 seconds

Identification of troglitazone responsive genes: induction of RTP801 during troglitazone-induced apoptosis in Hep 3B cells

  • Kim, Jin-Oh;Kim, Ji-Young;Kwack, Mi-Hee;Hong, Su-Hyung;Kim, Moon-Kyu;Kim, Jung-Chul;Sung, Young-Kwan
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.599-603
    • /
    • 2010
  • Troglitazone is an anti-diabetic agent that improves hyperglycemia by reducing peripheral insulin resistance in type II diabetic patients. Troglitazone has been shown to cause growth inhibition of various normal and cancerous cells. However, the molecular mechanism by which troglitazone affects the growth of these cancer cells remains unclear. Here, we report that troglitazone treatment of Hep 3B human hepatocellular carcinoma cells resulted in dose-dependent growth inhibition. Analysis of cell cycle distribution by flow cytometry showed that the number of apoptotic cells was increased in a dose-dependent manner in response to troglitazone treatment. cDNA microarray analysis showed a number of differentially expressed genes in response to troglitazone. Among the upregulated genes, hypoxia-inducible factor 1 (HIF-1)-responsive RTP801 was induced in a dose-dependent manner. We also observed HIF-1 accumulation by immnocytochemistry after troglitazone treatment. These results strongly suggest that RTP801 might be involved in troglitazone-induced apoptosis in Hep 3B cells.

Genetic Responses to Metal ion in Aslmonella typhimurium (Salmonella typhimurium의 금속이온에 대한 유전적 반응)

  • Jung, Ju-Ri;Park, Kyeong-Ryang;Koh, Sang-Kyun;Park, Yong-Keun;Lee, In-Soo
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.216-225
    • /
    • 1998
  • Metal ion-induced and it’s regulatory genes were screened in virulent salmonella typhimurium UK1 and tested cross-regulation with various stresses. Using the techniqud of P22-MudJ(Km, lacZ)-directed lacZ operon fusion, LF40 cuiA::MudJ and Lf153 cuiD::MudJ which were induced by copper were selected. cuia and cuiD were determined anaerobic coper inducible and copper tolerance response gene, respectively. Also cuiA and cuiD locus were determined at 81 and 8min, respectively, on salmonella Genetic Map. The two regulators were identified as cuaR, and cudR, which controls cuiA and cuiD, respectively. cuaR, and cudR appeared as negative regulators because the expression of cuiA-lac-Z and cuiD-lacZ were increased. Copper adapted UK1 showed high resistance to H$_{2}$O$_{2}$, but cuiD did not. The product of the cudR locus was responsible for decreasing the tolerance to copper and H$_{2}$O$_{2}$. Furthemore cuiA and cuiD locus were found to be part of a regulon under the control of a trans-acting regulators, rpoS, oxyR and relA. Therefore, the results suggest CTR participate with oxidative stress on Salmonella.

  • PDF

Expression of Vascular Endothelin-1 and Nitric Oxide Synthase in Fructose-fed Hypertensive Rats (과당식이 고혈압 흰쥐에서 혈관 Endothelin-1과 산화질소합성효소의 발현)

  • Paek, Yun-Woong;Kim, Myung-Hoon
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.45-52
    • /
    • 2002
  • Rats that are fed a fructose-rich diet develop hypertension, insulin resistance, and hypertriglyceridemia. To elucidate whether altered expression levels of endothelin-1 and nitric oxide synthase are related to the development of insulin-resistant hypertension, we examined the present study. Male Sprague-Dawley rats were fed a fructose-rich diet for 5 weeks. Systolic blood pressure significantly increased in fructose-fed rats. While serum free fatty acid and plasma nitrite/nitrate levels did not significantly differ between the fructose-fed and control groups, plasma insulin and serum triglyceride concentrations significantly increased in the former. Endothelin-1 mRNA expression in the aorta increased in fructose-fed rats. Neither the protein expression of constitutive nitric oxide synthase nor that of inducible nitric oxide synthase were significantly affected by fructose feeding. However, nitrite/nitrate levels in the aorta were significantly increased. These results suggest that an increase in vascular endothelin-1 is an important contributing factor to the development of hypertension in fructose-fed rats. However, the vascular nitric oxide pathway may not be causally related to the development of fructose-induced hypertension.

  • PDF

Neuroprotective Effects of the Extract of Zingiberis Rhizoma (건강 추출물의 뇌세포 보호 작용)

  • Jeong, Gil-Saeng;Li, Bin;Lee, Dong-Sung;Choi, Hyun-Gyu;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.190-195
    • /
    • 2010
  • Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as Parkinson's disease, Alzheimer's disease, epilepsy and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of these diseases. NNMBS098, a composition comprising the water insoluble of the 70% EtOH extract of Zingiberis Rhizoma, showed the potent neuroprotective effects on glutamateinduced neurotoxicity by induced the expression of heme oxygenase (HO)-1 and increased HO activity in the mouse hippocampal HT22 cells. Furthermore, NNMBS098 caused the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in mouse hippocampal HT22 cells. In addition, we found that treatment with c-Jun N-terminal kinase (JNK) inhibitor (SP600125) reduced NNMBS098-induced HO-1 expression and NNMBS098 also increased JNK phosphorylation. Therefore, these results suggest that NNMBS098 increases cellular resistance to glutamate-induced oxidative injury in mouse hippocampal HT22 cells, presumably through JNK pathway-Nrf2-dependent HO-1 expression.

Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • Oxidative stress is one of the major limiting factor in plant productivity. Reactive oxygens species (ROS) generated during metabolic processes damage cellular functions and consequently lead to disease, senescence and cell death. Plants have evolved an efficient defense system by which the ROS is scavenged by antioxidant enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). Attempts to reduce oxidative damages under the stress conditions have included the manipulation of 갠 scavenging enzymes by gene transfer technology. Increased SOD activities of transgenic plants lead to increased resistance against oxidative stresses derived from methyl viologen (MV), and from photooxidative damage caused by high light and low temperature. Transgenic tobacco plants overexpressing APX showed reduced damage following either MV treatment of photooxidative treatment. Overexpression of glutathion reductase (GR) leads to increase in pool of ascorbate and GSH, known as small antioxidant molecules. These results indicate through overexpression of enzymes involved in ROS-scavenging could maintain or improve the plant productivities under environment stress condition. In this study, the rational approaches to develop stress-tolerant plants by gene manipulation of antioxidant enzymes will be introduced to provide solutions for the global food and environmental problems in the $21^\textrm{st}$ century.

  • PDF

Effects of long double-stranded RNAs on the resistance of rock bream Oplegnathus fasciatus fingerling against rock bream iridovirus (RBIV) challenge

  • Kosuke, Zenke;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2010
  • To determine whether rock bream Oplegnathus fasciatus can be protected from rock bream iridovirus (RBIV) infection by intramuscular injection of long double-stranded RNAs (dsRNAs), we compared protective effect of virus-specific dsRNAs corresponding to major capsid protein (MCP), ORF 084, ORF 086 genes, and virus non-specific green fluorescent protein (GFP) gene. Furthermore, to determine whether the non-specific type I interferon (IFN) response was associated with protective effect, we estimated the activation of type I IFN response in fish using expression level of IFN inducible Mx gene as a marker. As a result, mortality of fish injected with dsRNAs and challenged with RBIV was delayed for a few days when comparing with PBS injected control group. However, virus-specific dsRNA injected groups exhibited no significant differences in survival period when compared to the GFP dsRNA injected group. Semi-quantitative analysis indicated that the degree of antiviral response via type I IFN response is supposedly equal among dsRNA injected fish. These results suggest that type I IFN response rather than sequence-specific RNA interference might involve in the lengthened survival period of fish injected with virus-specific dsRNAs.

1-Benzyl indazole derivative-based 18F-labeled PET radiotracer: Radiosynthesis and cell uptake study in cancer cells

  • More, Kunal N.;Lee, Jun Young;Park, Jeong-Hoon;Chang, Dong-Jo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.36-47
    • /
    • 2019
  • Hypoxia-inducible factor-1 ($HIF-1{\alpha}$) is a transcription factor activated in response to low oxygen level, and is highly expressed in many solid tumors. Moreover, $HIF-1{\alpha}$ is a representative biomarker of hypoxia and also helps to maintain cell homeostasis under hypoxic condition. Most solid tumors show hypoxia, which induces poor prognosis and resistance to conventional cancer therapies. Thus, early diagnosis of hypoxia with positron emission tomography (PET) radiotracer would be highly beneficial for management of malignant solid tumors with effective cancer therapy. YC-1 is a most promising candidate among several $HIF-1{\alpha}$ inhibitors. As an effort to develop a hypoxia imaging tool as a PET radiotracer, we designed and synthesized [$^{18}F$]DFYC based on potent derivative of YC-1 and performed preliminary in vitro cell uptake study. [$^{18}F$]DFYC showed a significant accumulation in SKBR-3 cells among other cancer cells, proving as a good lead to develop a hypoxic solid tumor such as breast cancer.

$17{\beta}$-estradiol Attenuates Renal Fibrosis in Mice with Obstructive Uropathy (폐쇄성 요로병증에서 $17{\beta}$-estradiol에 의한 신섬유화 감소 효과에 대한 연구)

  • Cho, Min-Hyun;Jang, Hee-Seong;Jung, Kyung-Jin;Park, Kwon-Moo
    • Childhood Kidney Diseases
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2011
  • Purpose : Men are generally more prone to chronic renal disease and progression to end stage renal disease than women. The purpose of this study is to prove the effect of gender and sex hormone on renal fibrosis in mice with unilateral ureteral obstruction (UUO) and to elucidate the specific underlying mechanisms. Methods :We compared the expression of ${\alpha}$-smooth muscle actin (${\alpha}$-SMA) in female and male mice with complete UUO (day 7). After this, we estimated the changes of renal fibrosis in the female mice with oophorectomy and in the female mice with oophorectomy and replacement of $17{\beta}$-estradiol, respectively. Results : The level of ${\alpha}$-SMA in the female kidney with UUO was significantly lower than that in the male kidney with UUO. oophorectomy and replacement of $17{\beta}$-estradiol did not change the expression of angiotensin II type 1 (AT1) receptor in the female kidney with UUO, whereas the expression of angiotensin II type 2 (AT2) receptor was significantly more elevated in the intact female (IF) and the oophorectomized female with estrogen (OF+E) than that in the oophorectomized female (OF). The expressions of inducible nitric oxide synthase (iNOS) in the IF and OF+E mice were significantly more elevated than that in the OF mice, which was similar to the expression of AT2 receptor. Conclusion : The female gender is associated with resistance to renal fibrosis in obstructive uropathy and this gender difference may originate from the existence of $17{\beta}$-estradiol, which has an anti-fibrotic effect via upregulation of the AT2 receptor and iNOS.

Caspase-1 Independent Viral Clearance and Adaptive Immunity Against Mucosal Respiratory Syncytial Virus Infection

  • Shim, Ye Ri;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • Respiratory syncytial virus (RSV) infection is recognized by the innate immune system through Toll like receptors (TLRs) and retinoic acid inducible gene I. These pathways lead to the activation of type I interferons and resistance to infection. In contrast to TLRs, very few studies have examined the role of NOD-like receptors in viral recognition and induction of adaptive immune responses to RSV. Caspase-1 plays an essential role in the immune response via the maturation of the proinflammatory cytokines IL-$1{\beta}$ and IL-18. However, the role of caspase-1 in RSV infection in vivo is unknown. We demonstrate that RSV infection induces IL-$1{\beta}$ secretion and that caspase-1 deficiency in bone marrow derived dendritic cells leads to defective IL-$1{\beta}$ production, while normal RSV viral clearance and T cell responses are observed in caspase-1 deficient mice following respiratory infection with RSV. The frequencies of IFN-${\gamma}$ producing or RSV specific T cells in lungs from caspase-1 deficient mice are not impaired. In addition, we demonstrate that caspase-1 deficient neonatal or young mice also exhibit normal immune responses. Furthermore, we find that IL-1R deficient mice infected with RSV exhibit normal Th1 and cytotoxic T lymphocytes (CTL) immune responses. Collectively, these results demonstrate that in contrast to TLR pathways, caspase-1 might not play a central role in the induction of Th1 and CTL immune responses to RSV.

Isolation and Characterization of Pathogen-Inducible Putative Zinc Finger DNA Binding Protein from Hot Pepper Capsicum annuum L.

  • Oh, Sang-Keun;Park, Jeong-Mee;Jung, Young-Hee;Lee, Sanghyeob;Kim, Soo-Yong;Eunsook Chung;Yi, So-Young;Kim, Young-Cheol;Seung, Eun-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.79.2-80
    • /
    • 2003
  • To better understand plant defense responses against pathogen attack, we identified the transcription factor-encoding genes in the hot pepper Capsicum annuum that show altered expression patterns during the hypersensitive response raised by challenge with bacterial pathogens. One of these genes, Ca1244, was characterized further. This gene encodes a plant-specific Type IIIA - zinc finger protein that contains two Cys$_2$His$_2$zinc fingers. Ca1244 expression is rapidly and specifically induced when pepper plants are challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generates weak Ca1244 expression. Ca1244 expression is also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene releasing compound. Whereas, salicylic acid and methyl jasmonate had moderate effects. Pepper protoplasts expressing a Ca1244-smGFP fusion protein showed Ca1244 localizes in the nucleus. Transgenic tobacco plants overexpressing Ca1244 driven by the CaMV 355 promoter show increased resistance to challenge with a tobacco-specific bacterial pathogen. These plants also showed constitutive upregulation of the expression of multiple defense-related genes. These observations provide the first evidence that an Type IIIA - zinc finger protein, Ca1244, plays a crucial role in the activation of the pathogen defense response in plants.

  • PDF