DOI QR코드

DOI QR Code

Caspase-1 Independent Viral Clearance and Adaptive Immunity Against Mucosal Respiratory Syncytial Virus Infection

  • Shim, Ye Ri (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Heung Kyu (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2014.12.07
  • Accepted : 2015.02.05
  • Published : 2015.04.30

Abstract

Respiratory syncytial virus (RSV) infection is recognized by the innate immune system through Toll like receptors (TLRs) and retinoic acid inducible gene I. These pathways lead to the activation of type I interferons and resistance to infection. In contrast to TLRs, very few studies have examined the role of NOD-like receptors in viral recognition and induction of adaptive immune responses to RSV. Caspase-1 plays an essential role in the immune response via the maturation of the proinflammatory cytokines IL-$1{\beta}$ and IL-18. However, the role of caspase-1 in RSV infection in vivo is unknown. We demonstrate that RSV infection induces IL-$1{\beta}$ secretion and that caspase-1 deficiency in bone marrow derived dendritic cells leads to defective IL-$1{\beta}$ production, while normal RSV viral clearance and T cell responses are observed in caspase-1 deficient mice following respiratory infection with RSV. The frequencies of IFN-${\gamma}$ producing or RSV specific T cells in lungs from caspase-1 deficient mice are not impaired. In addition, we demonstrate that caspase-1 deficient neonatal or young mice also exhibit normal immune responses. Furthermore, we find that IL-1R deficient mice infected with RSV exhibit normal Th1 and cytotoxic T lymphocytes (CTL) immune responses. Collectively, these results demonstrate that in contrast to TLR pathways, caspase-1 might not play a central role in the induction of Th1 and CTL immune responses to RSV.

Keywords

References

  1. Collins, P. L. 1991. The molecular biology of human respiratory syncytial virus (RSV) of the genus Pneumovirus. Springer. Plenum Press, New York. p. 103-162.
  2. Collins, P. L., and B. S. Graham. 2008. Viral and host factors in human respiratory syncytial virus pathogenesis. J. Virol. 82: 2040-2055. https://doi.org/10.1128/JVI.01625-07
  3. Falsey, A. R., P. A. Hennessey, M. A. Formica, C. Cox, and E. E. Walsh. 2005. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 352: 1749-1759. https://doi.org/10.1056/NEJMoa043951
  4. Sollberger, G., G. E. Strittmatter, M. Garstkiewicz, J. Sand, and H. D. Beer. 2014. Caspase-1: the inflammasome and beyond. Innate. Immun. 20: 115-125. https://doi.org/10.1177/1753425913484374
  5. Case, C. L. 2011. Regulating caspase-1 during infection: roles of NLRs, AIM2, and ASC. Yale J. Biol. Med. 84: 333-343.
  6. Kim, T. H., and H. K. Lee. 2014. Differential roles of lung dendritic cell subsets against respiratory virus infection. Immune Netw. 14: 128-137. https://doi.org/10.4110/in.2014.14.3.128
  7. Kim, T. H., and H. K. Lee. 2014. Innate immune recognition of respiratory syncytial virus infection. BMB Rrep. 47: 184-191. https://doi.org/10.5483/BMBRep.2014.47.4.050
  8. Franchi, L., T. Eigenbrod, R. Munoz-Planillo, and G. Nunez. 2009. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10: 241-247.
  9. Arend, W. P., G. Palmer, and C. Gabay. 2008. IL-1, IL-18, and IL-33 families of cytokines. Immunol. Rev. 223: 20-38. https://doi.org/10.1111/j.1600-065X.2008.00624.x
  10. Dinarello, C. A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27: 519-550. https://doi.org/10.1146/annurev.immunol.021908.132612
  11. Allen, I. C., M. A. Scull, C. B. Moore, E. K. Holl, E. Elvania-TeKippe, D. J. Taxman, E. H. Guthrie, R. J. Pickles, and J. P. Ting. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30: 556-565. https://doi.org/10.1016/j.immuni.2009.02.005
  12. Thomas, P. G., P. Dash, J. R. Aldridge, Jr., A. H. Ellebedy, C. Reynolds, A. J. Funk, W. J. Martin, M. Lamkanfi, R. J. Webby, K. L. Boyd, P. C. Doherty, and T. D. Kanneganti. 2009. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30: 566-575. https://doi.org/10.1016/j.immuni.2009.02.006
  13. Fang, R., K. Tsuchiya, I. Kawamura, Y. Shen, H. Hara, S. Sakai, T. Yamamoto, T. Fernandes-Alnemri, R. Yang, E. Hernandez-Cuellar, S. R. Dewamitta, Y. Xu, H. Qu, E. S. Alnemri, and M. Mitsuyama. 2011. Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J. Immunol. 187: 4890-4899. https://doi.org/10.4049/jimmunol.1100381
  14. Miao, E. A., I. A. Leaf, P. M. Treuting, D. P. Mao, M. Dors, A. Sarkar, S. E. Warren, M. D. Wewers, and A. Aderem. 2010. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11: 1136-1142. https://doi.org/10.1038/ni.1960
  15. Ichinohe, T., H. K. Lee, Y. Ogura, R. Flavell, and A. Iwasaki. 2009. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206: 79-87. https://doi.org/10.1084/jem.20081667
  16. Ichinohe, T., I. K. Pang, and A. Iwasaki. 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11: 404-410.
  17. Takeuchi, R., H. Tsutsumi, M. Osaki, K. Haseyama, N. Mizue, and S. Chiba. 1998. Respiratory syncytial virus infection of human alveolar epithelial cells enhances interferon regulatory factor 1 and interleukin-1beta-converting enzyme gene expression but does not cause apoptosis. J. Virol. 72: 4498-4502.
  18. Takeuchi, R., H. Tsutsumi, M. Osaki, S. Sone, S. Imai, and S. Chiba. 1998. Respiratory syncytial virus infection of neonatal monocytes stimulates synthesis of interferon regulatory factor 1 and interleukin-1beta (IL-1beta)-converting enzyme and secretion of IL-1beta. J. Virol. 72: 837-840.
  19. Segovia, J., A. Sabbah, V. Mgbemena, S. Y. Tsai, T. H. Chang, M. T. Berton, I. R. Morris, I. C. Allen, J. P. Ting, and S. Bose. 2012. TLR2/MyD88/NF-kappaB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One 7: e29695. https://doi.org/10.1371/journal.pone.0029695
  20. Kuida, K., J. A. Lippke, G. Ku, M. W. Harding, D. J. Livingston, M. S. Su, and R. A. Flavell. 1995. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267: 2000-2003. https://doi.org/10.1126/science.7535475
  21. Glaccum, M. B., K. L. Stocking, K. Charrier, J. L. Smith, C. R. Willis, C. Maliszewski, D. J. Livingston, J. J. Peschon, and P. J. Morrissey. 1997. Phenotypic and functional characterization of mice that lack the type I receptor for IL-1. J. Immunol. 159: 3364-3371.
  22. Kim, S., D. H. Joo, J. B. Lee, B. S. Shim, I. S. Cheon, J. E. Jang, H. H. Song, K. H. Kim, M. K. Song, and J. Chang. 2012. Dual role of respiratory syncytial virus glycoprotein fragment as a mucosal immunogen and chemotactic adjuvant. PLoS One 7: e32226. https://doi.org/10.1371/journal.pone.0032226
  23. Dinarello, C. A. 1996. Biologic basis for interleukin-1 in disease. Blood 87: 2095-2147.
  24. Weber, A., P. Wasiliew, and M. Kracht. 2010. Interleukin-1 (IL-1) pathway. Sci. Signal. 3: cm1.
  25. Pang, I. K., and A. Iwasaki. 2011. Inflammasomes as mediators of immunity against influenza virus. Trends Immunol. 32: 34-41. https://doi.org/10.1016/j.it.2010.11.004
  26. Taylor, G., E. J. Stott, M. Hughes, and A. P. Collins. 1984. Respiratory syncytial virus infection in mice. Infect. Immun. 43: 649-655.
  27. Graham, B. S., L. A. Bunton, P. F. Wright, and D. T. Karzon. 1991. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest. 88: 1026-1033. https://doi.org/10.1172/JCI115362
  28. Ostler, T., W. Davidson, and S. Ehl. 2002. Virus clearance and immunopathology by $CD8^+$ T cells during infection with respiratory syncytial virus are mediated by IFN-${\gamma}$. Eur. J. Immunol. 32: 2117-2123. https://doi.org/10.1002/1521-4141(200208)32:8<2117::AID-IMMU2117>3.0.CO;2-C
  29. Takeda, K., H. Tsutsui, T. Yoshimoto, O. Adachi, N. Yoshida, T. Kishimoto, H. Okamura, K. Nakanishi, and S. Akira. 1998. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8: 383-390. https://doi.org/10.1016/S1074-7613(00)80543-9
  30. Ghayur, T., S. Banerjee, M. Hugunin, D. Butler, L. Herzog, A. Carter, L. Quintal, L. Sekut, R. Talanian, M. Paskind, W. Wong, R. Kamen, D. Tracey, and H. Allen. 1997. Caspase-1 processes IFN-${\gamma}$-inducing factor and regulates LPS-induced IFN-${\gamma}$ production. Nature 386: 619-623. https://doi.org/10.1038/386619a0
  31. Adkins, B., C. Leclerc, and S. Marshall-Clarke. 2004. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4: 553-564. https://doi.org/10.1038/nri1394
  32. Cormier, S. A., D. You, and S. Honnegowda. 2010. The use of a neonatal mouse model to study respiratory syncytial virus infections. Expert Rev. Anti. Infect. Ther. 8: 1371-1380. https://doi.org/10.1586/eri.10.125

Cited by

  1. Intratumoral depletion of regulatory T cells using CD25-targeted photodynamic therapy in a mouse melanoma model induces antitumoral immune responses vol.8, pp.29, 2015, https://doi.org/10.18632/oncotarget.17663
  2. Transient Depletion of CD169 + Cells Contributes to Impaired Early Protection and Effector CD8 + T Cell Recruitment against Mucosal Respiratory Syncytial Virus Infection vol.8, pp.None, 2015, https://doi.org/10.3389/fimmu.2017.00819
  3. Differential Role of Anti-Viral Sensing Pathway for the Production of Type I Interferon β in Dendritic Cells and Macrophages Against Respiratory Syncytial Virus A2 Strain Infection vol.11, pp.1, 2015, https://doi.org/10.3390/v11010062
  4. Alveolar Macrophages Treated With Bacillus subtilis Spore Protect Mice Infected With Respiratory Syncytial Virus A2 vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.00447
  5. Plasmacytoid Dendritic Cells Contribute to the Production of IFN-β via TLR7-MyD88-Dependent Pathway and CTL Priming during Respiratory Syncytial Virus Infection vol.11, pp.8, 2015, https://doi.org/10.3390/v11080730
  6. Rhein Suppresses Lung Inflammatory Injury Induced by Human Respiratory Syncytial Virus Through Inhibiting NLRP3 Inflammasome Activation via NF-κB Pathway in Mice vol.10, pp.None, 2015, https://doi.org/10.3389/fphar.2019.01600
  7. NLRP3-Inflammasome Inhibition during Respiratory Virus Infection Abrogates Lung Immunopathology and Long-Term Airway Disease Development vol.13, pp.4, 2021, https://doi.org/10.3390/v13040692