• Title/Summary/Keyword: inducible promoter

Search Result 193, Processing Time 0.028 seconds

Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum

  • Lee, Jung-Kwan;Son, Ho-Kyoung;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.349-353
    • /
    • 2011
  • The ascomycete fungus Fusarium graminearum is an important plant pathogen responsible for Fusarium head blight in small grains and ear rot on maize. This fungus also produces the estrogenic metabolite, zearalenone (ZEA) that causes estrogenic disorders in humans and animals. Previously, we developed a conditional gene expression system for this fungus using a ZEA-inducible promoter (Pzear). In the present study, four other estrogenic compounds, including ${\beta}$-estradiol, estriol, estrone, and secoisolariciresinol, were screened as possible substitutes for ZEA in this system. Among them, ${\beta}$-estradiol was able to successfully induce the expression of a gene controlled by Pzear, while estrone was only able to partially induce its expression but the other two compounds were not effective. In combination, these results demonstrate that ${\beta}$-estradiol can replace ZEA in this conditional gene expression system, thereby eliminating the need to use the more expensive reagent, ZEA, and facilitating high-throughput functional analyses of F. graminearum in future studies.

Preventable effect of L-threonate, an ascorbate metabolite, on androgen-driven balding via repression of dihydrotestosteroneinduced dickkopf-1 expression in human hair dermal papilla cells

  • Kwack, Mi-Hee;Ahn, Ji-Sup;Kim, Moon-Kyu;Kim, Jung-Chul;Sung, Young-Kwan
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.688-692
    • /
    • 2010
  • In a previous study, we recently claimed that dihydrotestosterone (DHT)-inducible dickkopf-1 (DKK-1) expression is one of the key factors involved in androgen-potentiated balding. We also demonstrated that L-ascorbic acid 2-phosphate (Asc 2-P) represses DHT-induced DKK-1 expression in cultured dermal papilla cells (DPCs). Here, we investigated whether or not L-threonate could attenuate DHT-induced DKK-1 expression. We observed via RT-PCR analysis and enzyme-linked immunosorbent assay that DHT-induced DKK-1 expression was attenuated in the presence of L-threonate. We also found that DHT-induced activation of DKK-1 promoter activity was significantly repressed by L-threonate. Moreover, a co-culture system featuring outer root sheath (ORS) keratinocytes and DPCs showed that DHT inhibited the growth of ORS cells, which was then significantly reversed by L-threonate. Collectively, these results indicate that L-threonate inhibited DKK-1 expression in DPCs and therefore is a good treatment for the prevention of androgen-driven balding.

Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism

  • Moon, Yunwon;Park, Bongju;Park, Hyunsung
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.173-178
    • /
    • 2016
  • Liver cells experience hypoxic stress when drug-metabolizing enzymes excessively consume O2 for hydroxylation. Hypoxic stress changes the transcription of several genes by activating a heterodimeric transcription factor called hypoxia-inducible factor-1α/β (HIF-1α/β). We found that hypoxic stress (0.1% O2) decreased the expression of cytochrome P450 7A1 (CYP7A1), a rate-limiting enzyme involved in bile acid biosynthesis. Chenodeoxycholic acid (CDCA), a major component of bile acids, represses CYP7A1 by activating a transcriptional repressor named small heterodimer partner (SHP). We observed that hypoxia decreased the levels of both CDCA and SHP, suggesting that hypoxia repressed CYP7A1 without inducing SHP. The finding that overexpression of HIF-1α increased the activity of the CYP7A1 promoter suggested that hypoxia decreased the expression of CYP7A1 in a HIF-1-independent manner. Thus, the results of this study suggested that hypoxia decreased the activity of CYP7A1 by limiting its substrate O2, and by decreasing the transcription of CYP7A1.

Inhibition of the Induction of Nitric Oxide Synthase by Kobusin

  • Kim, Sang-Kyum;Pokharel, Yuba-Raj;Kim, Ok;Woo, Eun-Rhan;Kang, Keon-Wook
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.123-126
    • /
    • 2007
  • We isolated a lignan, kobusin from Geranium thunbergii and studied its effect on the expression of inducible nitric oxide synthase (iNOS) gene in a monocyte/macrophage cell line, RAW264.7 cells. Kobusin inhibited lipopolysaccharide (LPS)-stimulated NO production and the expression of iNOS in a concentration-dependent manner. To identify the mechanistic basis for its inhibition of iNOS induction, we examined the effect of kobusin on both the luciferase reporter activity using $NF-{\kappa}B$ minimal promoter and the nuclear translocation of p65. Kobusin suppressed the reporter gene activity and the LPS-induced movement of p65 in to nucleus. $NF-{\kappa}B$ activation is controlled by the phosphorylation and subsequent degradation of $I-{\kappa}B{\alpha}$, and in the present study, we found that $I-{\kappa}B{\alpha}$ phosphorylation was also inhibited by kobusin. Our findings indicate that kobusin may provide a developmental basis for an agent against inflammatory diseases.

Thermostable Xylanase Encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, Purification, Characterization and Production of Xylooligosaccharides

  • CHOI JUN-HO;LEE OH-SEUK;SHIN JAE-HO;KWAK YUN-YOUNG;KIM YOUNG-MOG;RHEE IN-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.57-63
    • /
    • 2006
  • We have cloned a xylanase gene (xynA) from Streptomyces thermocyaneoviolaceus. The deduced amino acid sequences of the XynA, including the active site sequences of glycosyl hydrolase family 10, showed high sequence homology with several xylanases assigned in this category. The XynA was overexpressed under an IPTG inducible T7 promoter control in E. coli BLR(DE3). The overproduced enzymes were excreted into culture supernatants and periplasmic space. The purified XynA had an apparent molecular mass of near 54 kDa, which corresponds to the molecular mass calculated from its gene. The optimum pH and temperature of the purified XynA were determined to be 5.0 and $65^{\circ}C$, respectively. The XynA retained over $90\%$ its activity after the heat treatment at $65^{\circ}C$ for 30 min. The XynA was highly efficient in producing xylose (X1), xylobiose (X2), xylotriose (X3), and xylotetraose (X4) from xylan.

Acetate Consumption Activity Directly Determines the Level of Acetate Accumulation During Escherichia coli W3110 Growth

  • Shin, Soo-An;Chang, Dong-Eun;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1127-1134
    • /
    • 2009
  • Escherichia coli excretes acetate during aerobic growth on glycolytic carbon sources, which has been explained as an overflow metabolism when the carbon flux into the cell exceeds the capacity of central metabolic pathways. Nonacetogenic growth of E. coli on gluconeogenic carbon sources like succinate or in carbon-limited slow growth conditions is believed an evidence for the explanation. However, we found that a strain defected in the acs (acetyl Co-A synthetase) gene, the product of which is involved in scavenging acetate, accumulated acetate even in succinate medium and in carbon-limited low growth rate condition, where as its isogenic parental strain did not. The acs promoter was inducible in noncatabolite repression condition, whereas the expression of the ackA-pta operon encoding acetate kinase and phosphotransacetylase for acetate synthesis was constitutive. Results in this study suggest that E. coli excretes and scavenges acetate simultaneously in the carbon-limited low growth condition and in nonacetogenic carbon source, and the activity of the acetate consumption pathway directly affects the accumulation level of acetate in the culture broth.

Expression and Secretion of Human Serum Albumin in the Yeast Saccharomyces cerevisae

  • Kang, Hyun-Ah;Jung, Moon-Soo;Hong, Won-Kyoung;Sohn, Jung-Hoon;Choi, Eui-Sung;Rhee, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.42-48
    • /
    • 1998
  • In order to maximize the secretory expression of human serum albumin (HSA) in the yeast Saccharomyces cerevisiae, a series of HSA expression vectors were constructed with a combination of different promoters, 5' untranslated regions (5'UTR), and secretion signal sequences. The expression vector composed of the galactose-inducible promoter GALl0, the natural 5'UTR, and the natural signal sequence of HSA directed the most efficient expression and secretion of HSA among the constructed vectors when introduced into several S. cerevisiae strains. Although the major form of HSA expressed and secreted in the yeast transformants was the mature form of 66 kDa, the truncated form of 45 kDa was also detected both in the cell extract and in the culture supernatant. The level of the intact HSA protein in the culture supernatant reached up to 30 mg/l at 24 h of cultivation in a shake-flask culture but began to decrease afterwards, indicating that the secreted HSA protein was unstable in a prolonged culture of yeast.

  • PDF

Effect of Galactose and Dextrose on Human Lipocortin I Expression in Recombinant Saccharomyces cerevisiae Carrying Galactose-Regulated Expression System

  • Nam, Soo-Wan;Seo, Dong-Jin;Rhee, Sang-Ki;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.168-173
    • /
    • 1993
  • The expression kinetics of human lipocortin I (LCI), a potential anti-inflammatory agent, was studied in the shake-flask and fermenter cultures of Saccharomyces cerevisiae carrying a galactose-inducible expression system. The cell growth, expression level of LCI, and the plasmid stability were investigted under various galactose induction conditions. The expression of LCI was repressed by the presence of a very small amount of dextrose in the culture medium, but it was induced by galactose after dextrose became completely depleted. The optimal ratio of dextrose to galactose for lipocortin I production was found to be 1.0 (10 g/l dextrose and 10 g/l galactose). With optimal D/G ratio of 1.0 and the addition of galactose prior to dextrose depletion, LCI of about 100~130 mg/l was produced. LCI at a concentration of 174 mg/l was porduced in the fed-batch culture, which was nearly a twice as much of that produced in the batch culture. The plasmid stability was very high in all culture cases, and thus was considered to be not an important parameter in the expression of LCI.

  • PDF

Expression of Chemokine and Tumor Necrosis Factor Alpha Genes in Murine Peritoneal Macrophages Infected with Orientia tsutsugamushi

  • Koh, Young-Sang
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • Scrub typhus, caused by Orientia tsutsugamushi infection, is clinically and histopathologically characterized by local as well as systemic inflammatory reactions, indicating that orientiae induce mechanisms that amplify the inflammatory response. To reveal underlying mechanisms of chemoattraction and activation of responding leukocytes, expression of chemokine and tumor necrosis factor alpha (TNF-$\alpha$) genes in murine peritoneal macrophages after infection with the obligate intracellular bacterium Ο.tsutsugamushi was investigated. The genes that were unregulated included macrophage inflammatory proteins l$\alpha$/$\beta$(MIP-l$\alpha$/$\beta$), MIP-2, monocyte chemoattractant protein 1(MCP-1), RANTES (regulated upon activation, normal T-cell expressed and secreted), gamma-interferon-inducible protein 10(IP-10) and TNF-$\alpha$. Peak expression of these chemokines and TNF-$\alpha$ was observed between 1 and 3 h after infection. These responses returned to or approached baseline preinfection levels 6 h after challenge. Semiquantitative reverse transcription (RT)-PCR analysis revealed dramatic Increases during infection in the steady-state levels of mRNA ceding for the inhibitory subunit of NF-kB (IkB$\alpha$), whose transcription is enhanced by binding of NF-kB within the IkB$\alpha$promoter region. Thus, Ο. tsutsugamushi appears to be a stung inducer of chemokines and TNF-$\alpha$ which may significantly contribute to inflammation and tissue damage observed in scrub typhus by attracting and activating phagocytic leukocytes.

  • PDF

The Fission Yeast Hda1p Functions on the Regulation of Proper Cell Division

  • Hwang, Hyung-Seo;Suh, Na-Young;Song, Ki-Won
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.263-267
    • /
    • 2000
  • We cloned $hda1^+$ (histone deacetylase 1) of fission yeast Schizosaccharomyces pombe. The hda1 of S. pombe was previously reported to encode for an active histone deacetylase (Rundlett et al., 1996; Olsson et al., 1998). The $hda1^+$ is phylogenetically related to the new open reading frame HOS2 of Saccharomyces cerevisiae and only shows a partial homology to the well-known histone deacetylase subclasses, RPD3 and HDA1. A single hda1 mRNA of 1.8 kb was detected at the same level in actively growing and nitrogen-starved cells. When highly over-expressed in S. pombe from an inducible promoter, $hda1^+$ inhibited cell proliferation and caused defects in morphology and cell division. The increased histone deacetylase activity was detected in hdar over-expressing cells. These results suggest that the Hda1p should function on the regulation of cell division possibly by (Allfrey, 1966) direct deacetylation of cytoskeletal (Wade et al., 1997) and cell division regulatory proteins, (Wolffe, 1997) or by controlling their gene expressions.

  • PDF