Thermostable Xylanase Encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, Purification, Characterization and Production of Xylooligosaccharides

  • CHOI JUN-HO (Department of Agricultural Chemistry and Institute of Agricultural Science & Technology, Kyungpook National University) ;
  • LEE OH-SEUK (Department of Agricultural Chemistry and Institute of Agricultural Science & Technology, Kyungpook National University) ;
  • SHIN JAE-HO (Department of Agricultural Chemistry and Institute of Agricultural Science & Technology, Kyungpook National University) ;
  • KWAK YUN-YOUNG (Department of Agricultural Chemistry and Institute of Agricultural Science & Technology, Kyungpook National University) ;
  • KIM YOUNG-MOG (Department of Agricultural Chemistry and Institute of Agricultural Science & Technology, Kyungpook National University) ;
  • RHEE IN-KOO (Department of Agricultural Chemistry and Institute of Agricultural Science & Technology, Kyungpook National University)
  • Published : 2006.01.01

Abstract

We have cloned a xylanase gene (xynA) from Streptomyces thermocyaneoviolaceus. The deduced amino acid sequences of the XynA, including the active site sequences of glycosyl hydrolase family 10, showed high sequence homology with several xylanases assigned in this category. The XynA was overexpressed under an IPTG inducible T7 promoter control in E. coli BLR(DE3). The overproduced enzymes were excreted into culture supernatants and periplasmic space. The purified XynA had an apparent molecular mass of near 54 kDa, which corresponds to the molecular mass calculated from its gene. The optimum pH and temperature of the purified XynA were determined to be 5.0 and $65^{\circ}C$, respectively. The XynA retained over $90\%$ its activity after the heat treatment at $65^{\circ}C$ for 30 min. The XynA was highly efficient in producing xylose (X1), xylobiose (X2), xylotriose (X3), and xylotetraose (X4) from xylan.

Keywords

References

  1. Basaran, P., Y. D. Hang, N. Basaran, and R. W. Worobo. 2001. Cloning and heterologous expression of xylanase from Pichia stipitis in Escherichia coli. J. Appl. Microbiol. 90: 248-255 https://doi.org/10.1046/j.1365-2672.2001.01237.x
  2. Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147 https://doi.org/10.1038/417141a
  3. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cho, N. and S. Bai. 1997. Purification and characterization of xylanase from Bacillus sp. strain DSNC 101. J. Microbiol. Biotechnol. 7: 386-390
  6. Cho, S. G. and Y. J. Choi. 1995. Nucleotide sequence analysis of an endo-xylanase gene (xynA) from Bacillus stearothermophilus. J. Microbiol. Biotechnol. 5: 117-124
  7. Frederick, M. M., C.-H. Kiang, J. R. Frederick, and P. J. Reilly. 1985. Purification and characterization of endo-xylanases from Aspergillus niger. Two isozymes active on xylan backbones near branch points. Biotechnol. Bioeng. 27: 525-532 https://doi.org/10.1002/bit.260270420
  8. Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187-194 https://doi.org/10.1099/00221287-139-2-187
  9. Hamzah, A. and N. Abdulrashid. 1999. Characterization of xylanase produced by Bacillus pumilus strain PJ19. J. Microbiol. Biotechnol. 9: 157-162 https://doi.org/10.1159/000015947
  10. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmid. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  11. Hazlewood, G. P. and H. J. Gilbert. 1993. Molecular biology of hemicellulase, pp. 103-126. In M. P. Coughlan and G. P. Hazlewood (eds.), Hemicellulose and Hemicellulase. Portland Press, London, U. K
  12. Henrissat, B. and A. Bairoch. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696 https://doi.org/10.1042/bj3160695
  13. Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and ${\beta}$- xylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
  14. Herbert, R. A. 1992. A perspective on the biotechnological potential of extremophiles. Trends Biotechnol. 10: 395-402 https://doi.org/10.1016/0167-7799(92)90282-Z
  15. Hong, I. P., H. K. Jang, S. Y. Lee, and S. G. Choi. 2003. Cloning and characterization of a bifunctional cellulase-chitosanase gene from Bacillus licheniformis NBL420. J. Microbiol. Biotechnol. 13: 35-42
  16. Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, and H. Schrempt. 1985. Genetic Manipulation of Streptomyces: A Laboratory Manual. John Innes Foundation, Norwich, England
  17. Iefuji, H., M. Chino, M. Kato, and Y. Iimura. 1996. Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60: 1331-1338 https://doi.org/10.1271/bbb.60.1331
  18. Ito, Y., T. Tomita, N. Roy, A. Nakano, N. Sugawara-Tomita, S. Watanabe, N. Okai, N. Abe, and Y. Kamino. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978 https://doi.org/10.1128/AEM.69.12.6969-6978.2003
  19. Kaneko, S., A. Kuno, Z. Fujimoto, D. Shimizu, S. Machida, Y. Sato, K. Yura, M. Go, H. Mizuno, K. Taira, I. Kusakabe, and K. Hayashi. 1999. An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E-86 bymodule shuffling with the Cex of Cellulomonas fimi and bysite-directed mutagenesis. FEBS Lett. 460: 61-66 https://doi.org/10.1016/S0014-5793(99)01318-6
  20. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
  21. Kimura, T., H., Suzuki, H. Furuhashi, T. Aburatani, K. Morimoto, S. Karita, K. Sakka, and K. Ohmiya. 2000. Molecular cloning, overexpression, and purification of a major xylanase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 64: 2734-2738 https://doi.org/10.1271/bbb.64.2734
  22. Kohomoto, T., F. Fukui, H. Takaku, Y. Machida, and T. Mitsuoka. 1991. Does-respose of isomaltooligosaccharide for increasing fecal Bifidobacteria. Agric. Biol. Chem. 55: 2157-2164 https://doi.org/10.1271/bbb1961.55.2157
  23. Koo, B. J., H. G.. Oh, K. H. Cho, C. K. Yang, K. H. Jung, and D. Y. Ryu. 1996. Purification and characterization of Clostridum thermocellum xylanase from recombinants Escherichia coli. J. Microbiol. Biotechnol. 6: 414-469
  24. Kubata, B. K., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1994. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl. Envir. Microbiol. 60: 531-535
  25. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  26. Lee, O. S., C. S. Choi, J. H. Choi, G. J. Joo, and I. K. Rhee. 2001. Production of xylooligosaccharides with thermostable xylanases from Streptomyces thermocyaneoviolaceus. Kor. J. Appl. Microbiol. Biotechnol. 29: 221-226
  27. Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021
  28. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426- 428 https://doi.org/10.1021/ac60147a030
  29. Mondou, F., F. Shareck, R. Morosoli, and D. Kluepfel. 1986. Cloning of the xylanase gene of Streptomyces lividans. Gene 49: 323-329 https://doi.org/10.1016/0378-1119(86)90368-9
  30. Oku, T. 1994. Special physiological functions of newly developed mono and oligosaccharides. In Functional Foods (Goldberg, I., ed.), Chapman & Hall, N. Y
  31. Oku, T., C. Roy, D. C. Watson, W. Wakarchuk, R. Campbell, M. Yaguchi, L. Jurasek, and M. G. Paice. 1993. Amino acid sequence and thermostability of xylanase A from Schizophyllum commune. FEBS Lett. 334: 296-300 https://doi.org/10.1016/0014-5793(93)80698-T
  32. Osborn, M. J., J. E. Gander, and E. Parisi. 1972. Mechanisom of assembly of the outer membrane of Salmonella typhimurium. Site of synthesis of lipopolysaccharide. J. Biol. Chem. 25: 3973-3986
  33. Palazzolo, M. J., B. A. Hamilton, D. L. Ding, C. H. Martin, D. A. Mead, R. C. Mierendorf, K. V. Raghavan, E. M. Meyerowitz, and H. D. Lipshitz. 1990. Phage lambda cDNA cloning vectors for subtractive hybridization, fusion-protein synthesis and Cre-loxP automatic plasmid subcloning. Gene 30: 25-36
  34. Rydholm, S. A. 1965. Pulping Processes. Interscience Publishers, New York
  35. Sambrook, J., E. F. Fritch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  36. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463-5467
  37. Schlacher, A., K. Holzmann, M. Hayn, W. Steiner, and H. Schwab. 1996. Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J. Biotechnol. 20: 211-218
  38. Shareck, F., C. Roy, M. Yaguchi, R. Morosoli and D. Kluepfel. 1991. Sequences of three genes specifying xylanases in Streptomyces lividans. Gene 107: 75-82 https://doi.org/10.1016/0378-1119(91)90299-Q
  39. Srivastava, R., S. S. Ali, and B. S. Srivastava. 1991. Cloning of xylanase gene of Streptomyces flavogriseus in Escherichia coli and bacteriophage lambda-induced lysis for the release of cloned enzyme. FEMS Microbiol. Lett. 62: 201-205 https://doi.org/10.1111/j.1574-6968.1989.tb03694.x
  40. Tsujibo, H., T. Ohtsuki, T. Iio, I. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
  41. Vats-Mehta, S., P. Bouvrette, F. Shareck, R. Morosoli, and D. Kluepfel. 1990. Cloning of a second xylanase-encoding gene of Streptomyces lividans 66. Gene 86: 119-122 https://doi.org/10.1016/0378-1119(90)90123-9
  42. Viikari, L., M., Tenkanen, J. Buchert, M. Ratto, M. Bailey, M. Siika-Aho, and M. Linko. 1993. Hemicellulases for industrial applications, pp. 131-182. In J. N. In: Saddler JN (ed) Bioconversion of Forest and Agricultural Plant Residues. CAB, Oxford
  43. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of -1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305-317
  44. Woodcock, D. M., P. J. Crowther, J. Doherty, S. Jefferson, E. DeCruz, M. Noyer-Weidner, S. S. Smith, M. Z. Michael, and M. W. Graham. 1989. Quantitative evaluation of Escherichai coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17: 3469-3778 https://doi.org/10.1093/nar/17.9.3469
  45. Zeikus, J. G., C. Lee, Y. E. Lee, and B. C. Saha. 1991. Thermostable saccharidases: new sources, uses, and biodesign, pp. 36-51. In G. F. Leatham, M. E. Himmel (eds.) Enzymes in Biomass Conversion. American Chemical Society, Washington, D.C