• Title/Summary/Keyword: induced ground

Search Result 916, Processing Time 0.028 seconds

Effects of Specific Exercises on Motor Function Recovery In Rats With Experimental Spinal Cord Injury (척수 손상 쥐에 실시한 특정 과제 운동이 운동 행동에 미치는 영향)

  • Jun, Kyoung-Hee
    • Physical Therapy Korea
    • /
    • v.18 no.1
    • /
    • pp.93-103
    • /
    • 2011
  • This study was implemented to verify the feasibility of motor function recovery and the appropriate period for therapy. The research began with spinal laminectomy of 40 white rats of Sprague-Dawley breed and induced them spinal crush injury. Following results were obtained by using the modified Tarlov test (MTT), Basso, Beattle, Bresnahan locomotor rating scale (EBB scale) and modified inclined plate test (MIPT). First, the measurement using the MTT confirm that the most severe aggravation and degeneration of functions are observed two days after induced injury, and no sign of neuromotor function recovery. Second, better scores were achieved by open-ground movement group on BBB locomotor rating scale test, and weight-bearing on inclined plate group show better performance on MIPT. Third, both BBB and MIPT scale manifested the peak of motor function recovery during 16th day after the injury and turn into gradual recovery gradient during 16th to 24th. Fourth, the control group showed functional recovery, however, the level of recovery was less significant when compared with group open-ground movement group and weight-bearing on inclined plate group. Hence, it was clearly manifested that the lumbar region of the spinal cord had shown the best performance when its functions were measured after the execution of specific physical training; therefore it indicated the possibility of learning specific task even in damaged lumbar regions. Thus it is expected to come out with better and more effective functional recovery if concentrated physical therapy was applied starting 4 days after the injury till 16 days, which is the period of the most active recovery.

Transfer Length of the Soil Nail Induced by the Shear Deformation (전단변형에 따른 쏘일네일의 전이길이)

  • You, Min Ku;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.61-73
    • /
    • 2018
  • When the shear deformation occurs on the slope reinforced with soil nail, a passive earth pressure is induced on the ground around the soil nail and the increase of shear deformation causes the earth pressure variation of the ground and the deformation and member force change of the soil nail. In this study, the shear behavior of the soil nail was analyzed experimentally by inducing the shear deformation in the vertical direction of the soil nail using a large-scale direct shear test equipment and it was verified through numerical analysis. The shear test was performed on the bonded length (6D, 8D, 10D and 12D) of the soil nail separated from the shear surface. As a result, it was observed that the continuous increase of the shear deformation caused the damage of the grout and the effect according to the bonded length was analyzed. Through the model test and the numerical analysis, it was confirmed that the transfer length of the soil nail was 0.2~0.22m, which is larger than 0.1m suggested in the previous study, and the shear zone was in the range of 0.6m from the shear surface.

Pozzolanic properties of trachyte and rhyolite and their effects on alkali-silica reaction

  • Baki, Vahiddin Alperen;Nayir, Safa;Erdogdu, Sakir;Ustabas, Ilker
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.299-306
    • /
    • 2021
  • The alkali-silica reaction (ASR) is a highly complex chemical reaction which causes damage to concrete and thus adversely affects the durability and service life. Significant damage can occur in concrete structures due to cracking because of the chemical reactions taking place. Various mineral and chemical additives have been used so far to mitigate ASR and/or to reduce its adverse effects. In this study, ground trachyte and rhyolite provided from Rize-Çağrankaya region, Turkey, were used to investigate their effectiveness in controlling ASR-induced damage by substituting them with cement at certain ratios. In this context, initially the possible use of trachyte and rhyolite as pozzolanas was determined in accordance with BS EN 450-1 and TS 25 standards by considering their pozzolanic activities and then their effectiveness in mitigating the ASR was evaluated as per ASTM C 1567-13. In experimental study, blends of trachyte and rhyolite were prepared by substituting them by cement at 25%, 35%, and 50% percentage. Totally 7 mixes were prepared and three samples of 25×25×285 mm mortar bars were prepared from each batch. The length changes of the mortar bars were determined at the end of 3, 7, 14 and 28 days of exposure. SEM, along with XRD analyses were performed to examine and elementally determine the ASR products that have been formed. The results obtained have shown that ground trachyte and rhyolite used in this study can be used as pozzolanas in concrete and they can also significantly mitigate ASR-induced damage as the substitution ratio increases.

In situ investigations into mining-induced overburden failures in close multiple-seam longwall mining: A case study

  • Ning, Jianguo;Wang, Jun;Tan, Yunliang;Zhang, Lisheng;Bu, Tengteng
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.657-673
    • /
    • 2017
  • Preventing water seepage and inrush into mines where close multiple-seam longwall mining is practiced is a challenging issue in the coal-rich Ordos region, China. To better protect surface (or ground) water and safely extract coal from seams beneath an aquifer, it is necessary to determine the height of the mining-induced fractured zone in the overburden strata. In situ investigations were carried out in panels 20107 (seam No. $2-2^{upper}$) and 20307 (seam No. $2-2^{middle}$) in the Gaojialiang colliery, Shendong Coalfield, China. Longwall mining-induced strata movement and overburden failure were monitored in boreholes using digital panoramic imaging and a deep hole multi-position extensometer. Our results indicate that after mining of the 20107 working face, the overburden of the failure zone can be divided into seven rock groups. The first group lies above the immediate roof (12.9 m above the top of the coal seam), and falls into the gob after the mining. The strata of the second group to the fifth group form the fractured zone (12.9-102.04 m above the coal seam) and the continuous deformation zone extends from the fifth group to the ground surface. After mining Panel 20307, a gap forms between the fifth rock group and the continuous deformation zone, widening rapidly. Then, the lower portion of the continuous deformation zone cracks and collapses into the fractured zone, extending the height of the failure zone to 87.1 m. Based on field data, a statistical formula for predicting the maximum height of overburden failure induced by close multiple seam mining is presented.

The Principles and Practice of Induced Polarization Method (유도분극 탐사의 원리 및 활용)

  • Kim, Bitnarae;Nam, Myung Jin;Jang, Hannuree;Jang, Hangilro;Son, Jeong-Sul;Kim, Hee Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.100-113
    • /
    • 2017
  • Induced polarization (IP) method is based on the measurement of a polarization effect known as overvoltage of the ground. IP techniques have been usually used to find mineral deposits, however, nowadays widely applied to hydrogeological investigations, surveys of groundwater pollution and foundation studies on construction sites. IP surveys can be classified by its source type, i.e., time-domain IP estimating chargeability, frequency-domain IP measuring frequency effect (FE), and complex resistivity (CR) and spectral IP (SIP) measuring complex resistivity. Recently, electromagnetic-based IP has been studied to avoid the requirement for spike electrodes to be placed in the ground. In order to understand IP methods in this study, we: 1) classify IP surveys by source type and measured data and illustrate their basic theories, 2) describe historical development of each IP forward modeling and inversion algorithm, and finally 3) introduce various case studies of IP measurements.

Behavior of Closely-Spaced Tunnel According to Separation Distance Using Scaled Model Tests (축소모형실험을 통한 이격거리에 따른 근접터널의 거동)

  • Ahn, Hyun-Ho;Choi, Jung-In;Shim, Seong-Hyeon;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.5-16
    • /
    • 2008
  • Most of roadway tunnels have been constructed in the form of parallel twin tunnel in Korea. If parallel twin tunnel does not have a sufficient separation distance between tunnels, the problem of tunnel stability can occur. Generally, it is reported that tunnels are not influenced by each other when a center distance between tunnels is two times longer than tunnel diameter under the complete elastic ground and five times under the soft ground. In this study, the scaled model tests of closely-spaced parallel twin tunnel using homogeneous material are performed and induced displacements are measured around the tunnel openings during excavation. The influence of separation distance between tunnels on the behavior of closely-spaced tunnel is investigated. The experimental results are expressed by the induced displacement vector and progress of crack during construction and at failure. The results show that based on the analysis of induced displacement at the crown during construction, the additional displacement of the preceding tunnel induced by the excavation of following tunnel decreases as the separation distance between twin tunnel increases until the center to center distance is two times of tunnel diameter. Beyond this point, however, the additional displacement has become stabilized.

A Experimental Study on the Strength Improvement of Ground Granulated Blast Furnace Slag Concrete Using Recycled Aggregate Powder as Alkali-activator (순환골재 미분말을 알칼리 자극제로 활용한 고로슬래그 미분말 혼입 콘크리트의 강도증진에 관한 실험적 연구)

  • Jeon, Chan-Soo;Ryu, Dong-Wo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • Accordingly, this study, in order to use powder of recycled aggregate from production of recycled aggregate as an activator of ground granulated blast furnace slag, the influence of added recycled aggregate powder on physical properties of concrete induced ground granulated blast furnace slag were analyzed by hydration stages. The results of the study are summarized as follows: Except for samples eluted powder of recycled aggregate 1%, all the samples were high alkali suspensions with higher than pH 12.0. In particular, when eluted time was 5 hours, the sample eluted powder of recycled aggregate 3% showed about 15 mg/l of calcium hydroxide that was not different from the amount of calcium hydroxide in the mixing water eluted powder of recycled aggregate 5%. Hence, from this results, it can be considered that optimal eluted powder of recycled aggregate was 3% in this study. When using mixing water eluted with powder of recycled aggregate, compared to use of ordinary mixing water, it showed greater compressive strength in the entire ages, and in the sample replaced with ground granulated blast furnace slag by 50%, its compressive strength was greater than that of the OPC. As use of mixing water eluted with powder of recycled aggregate in concrete used with large amount of ground granulated blast furnace slag was more effective for improving compressive strength than ordinary mixing water, it is verified that powder of recycled aggregate had an effect of activator.

Evaluation of Freezing Rate of Marine Clay by Artificial Ground Freezing Method with Liquid Nitrogen (액화질소를 이용한 인공동결공법 적용시 해성 점토지반의 동결속도 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.555-565
    • /
    • 2018
  • Nowadays, the artificial ground freezing (AGF) method has been used in many geotechnical engineering applications such as temporary excavation support, underpinning, and groundwater cutoff. The AGF method conducts the freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as an excavation support and cutoff wall. Two refrigerants of brine with the freezing temperature of $-20{\sim}-40^{\circ}C$ and liquid nitrogen with the freezing (evaporating) temperature of $-196^{\circ}C$ are commonly being used in geotechnical applications. This paper performed a series of field experiments to evaluate the freezing rate of marine clay in application of the AGF method. The field experiments consisted of the single freezing-pipe test and the frozen-wall formation test by circulating liquid nitrogen, which is a cryogenic refrigerant, into freezing pipes constructed at a depth of 3.2 m in the ground. The temperature of discharged liquid nitrogen was maintained through the automatic valve, and the temperature change induced by AGF method was measured at the freezing pipes and in the ground with time. According to the experimental results, the single freezing-pipe test consumed about 11.9 tons of liquid nitrogen for 3.5 days to form a cylindrical frozen body with the volume of about $2.12m^3$. In addition, the frozen-wall formation test used about 18 tons of liquid nitrogen for 4.1 days to form a frozen wall with the volume of about $7.04m^3$. The radial freezing rate decreased with increasing the radius of frozen body because the frozen area at a certain depth is proportional to the square of the radius. The radial freezing rate was formulated as a simple equation.

Experimental study on the tunnel behavior induced by the excavation and the structure construction above existing tunnel (기존터널 상부지반 굴착 후 구조물 설치에 따른 터널거동에 관한 실험적 연구)

  • Cha, Seok-Kyu;Lee, Sangduk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.640-655
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structures. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process in the ground under the excavation basement can affect the existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effect of the excavation of the ground and the new structure load on the existing tunnel was experimentally implemented and the influence of the adjacent construction on the existing tunnel was investigated. For this purpose a large testing model with 1/5 scale of the actual size was manufactured. The influence of ground excavation, width of the load due to new structure, and distance between centers of tunnel and of excavation on the existing tunnel was investigated. In this study, it was confirmed that the influence on the existing tunnel gets larger, as the excavation depth get deeper. At the same distance, it was confirmed that the tunnel displacement increased up to three times according to the increase of the building load width. That is, the load width influences the existing tunnel larger than the excavation depth. As the impact of the distance between centers of tunnel and of excavation, it was confirmed that tunnel crown displacement decreased by 48%. The result showed that a tunnel is located in the range of 1D (D: tunnel diameter) from the center of excavation, the effect of excavation is the largest.

A Study on the Behaviour of Single Piles to Adjacent Tunnelling in Stiff Clay (견고한 점토층에서 실시된 터널근접시공으로 인한 단독말뚝의 거동에 대한 연구)

  • Jeon, Youngjin;Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.13-22
    • /
    • 2015
  • In the current work, a series of three-dimensional (3D) numerical modelling has been performed in order to study the effects of the relative locations of tunnels with respect to the position of pile tips which governs the behaviour of pre-existing, adjacent single piles. In the numerical analyses, several governing factors, such as tunnelling-induced pile head settlements, relative displacements, volume losses, axial pile forces, interface shear stresses and apparent factors of safety have been analysed. When the pile tips are inside the tunnelling influence zone, of which the pile tip location is considered with respect to the tunnel position, tunnelling-induced pile head settlements are larger than the ground surface settlements, resulting in tunnelling-induced tensile pile forces. On the contrary, when the pile tips are outside the influence zone, compressive pile forces associated with downward shear stresses at the upper part of the piles are developed. Based on computed load and displacement relation of the pile, the apparent factors of safety of the piles inside the tunnelling influence zone have been reduced by 36% in average. The shear transfer mechanism based on the relative tunnel locations has been analysed in great detail by considering tunnelling-induced pile forces, interface shear stresses and the apparent factors of safety.