DOI QR코드

DOI QR Code

The Principles and Practice of Induced Polarization Method

유도분극 탐사의 원리 및 활용

  • Kim, Bitnarae (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Nam, Myung Jin (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Jang, Hannuree (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Jang, Hangilro (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Son, Jeong-Sul (Korea Institute of Geoscience and Mineral Resources,) ;
  • Kim, Hee Jun (Department of Energy Resources Engineering, Pukyong National University)
  • Received : 2017.03.09
  • Accepted : 2017.05.27
  • Published : 2017.05.31

Abstract

Induced polarization (IP) method is based on the measurement of a polarization effect known as overvoltage of the ground. IP techniques have been usually used to find mineral deposits, however, nowadays widely applied to hydrogeological investigations, surveys of groundwater pollution and foundation studies on construction sites. IP surveys can be classified by its source type, i.e., time-domain IP estimating chargeability, frequency-domain IP measuring frequency effect (FE), and complex resistivity (CR) and spectral IP (SIP) measuring complex resistivity. Recently, electromagnetic-based IP has been studied to avoid the requirement for spike electrodes to be placed in the ground. In order to understand IP methods in this study, we: 1) classify IP surveys by source type and measured data and illustrate their basic theories, 2) describe historical development of each IP forward modeling and inversion algorithm, and finally 3) introduce various case studies of IP measurements.

유도분극(induced polarization; IP) 탐사는 분극 현상으로 인해 매질에서 발생하는 과전압을 측정하는 전기전자 탐사법으로 주로 금속 광상을 찾을 때 사용되었으나 장비의 발전에 힘입어 최근에는 지하수, 환경 오염, 지반 등 여러 분야에서 다양하게 활용되고 있다. IP 탐사에는 충전율을 측정하는 시간영역 IP 탐사, 진동수 효과를 측정하는 진동수영역 IP 탐사, 그리고 복소수 전기비저항을 측정하는 복소 전기비저항 탐사와 광대역 IP (spectral IP; SIP) 탐사 등이 있다. 또한, 최근에는 전극 형태의 측정 방법의 단점을 보완하기 위해 전자기 유도에 기초한 IP 법도 개발되어 지속적으로 연구가 진행되고 있다. 다양한 IP 탐사법에 대한 체계적인 이해를 돕기 위해 이 논문에서는 1) 송신원 형태와 측정 자료를 기준으로 IP 탐사법을 분류하고 이들에 대한 개념 정리와 함께 2) 각 탐사법의 수치 모델링 및 역산 알고리듬 발전 과정을 자세히 기술하고 3) 마지막으로 IP 탐사의 다양한 현장 활용 사례를 소개하고자 한다.

Keywords

References

  1. Bhattacharyya, B. K., 1964, Electromagnetic fields of a small loop antenna on the surface of a polarizable medium, Geophysics, 29, 814-831. https://doi.org/10.1190/1.1439423
  2. Blaschek, R., Hordt, A., and Kemna, A., 2008, A new sensitivitycontrolled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support, Geophysics, 73, F45-F54. https://doi.org/10.1190/1.2824820
  3. Cole, K. S. and Cole, R. H., 1942, Dispersion and absorption in dielectrics II. Direct current characteristics, The Journal of Chemical Physics, 10, 98-105. https://doi.org/10.1063/1.1723677
  4. Commer, M., Newman, G. A., Williams, K. H., and Hubbard, S. S., 2011, 3D induced polarization data inversion for complex resistivity, Geophysics, 76, F157-F171. https://doi.org/10.1190/1.3560156
  5. Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52, 289-300. https://doi.org/10.1190/1.1442303
  6. Davydycheva, S., Rykhlinski, N., and Legeido, P., 2006, Electricalprospecting method for hydrocarbon search using the induced-polarization effect, Geophysics, 71, G179-G189. https://doi.org/10.1190/1.2217367
  7. Dey, A., and Morrison, H. F., 1973, Electromagnetic Coupling in Frequency and Time-Domain Induced-Polarization Surveys Over a Multilayered Earth, Geophysics, 38, 380-405. https://doi.org/10.1190/1.1440348
  8. Dias, C. A., 1968, A non-grounded method for measuring induced electrical polarization and conductivity, Ph.D. thesis, University of California, Berkley, USA.
  9. Dias, C. A., 1972, Analytical model for a polarizable medium at radio and lower frequencies, Journal of Geophysical Research, 77, 4945-4956. https://doi.org/10.1029/JB077i026p04945
  10. Duprat, A., Roudot, M., and Spitz, S., 1986, Testing the TRANSIEL method in mineral and geothermal exploration, Geophysical Prospecting, 34, 445-462. https://doi.org/10.1111/j.1365-2478.1986.tb00476.x
  11. El-Kaliouby, H. M., ElDiwany, E. A., Hashish, E., Bayoumi, A., and Poulton, M. M., 2001, Forward modeling and inversion of IP effects in TEM response using measured rock samples data, 71th Ann. Internat. Mtg. Soc. Expl. Geophys., SEG Technical Program Expanded Abstracts 2001, 1525-1528.
  12. Esparza, F. J., and Gomez-Trevino, E., 1997, 1-D inversion of resistivity and induced polarization data for the least number of layers, Geophysics, 62, 1724-1729. https://doi.org/10.1190/1.1444272
  13. Fink, J. B., McAlister, E. O., Sternberg, B. K., Wieduwilt, W. G., and Ward, S. H. (Eds.), 1990, Induced Polarization Applications and Case Histories, Society of Exploration Geophysicists.
  14. Flekkoy, E. G., Garina, S., Kjerstad, J., Legeydo, P., Springer, M., and Vladimirov, V., 2013, Hydrocarbon Detection through Induced Polarization-Case Studies from the North Sea, 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013.
  15. Fortier, R., and Allard, M., 1998, Induced polarization and resistivity logging in permafrost, The 7th International Permafrost Conference, Yellowknife, Canada, 275-282.
  16. Gasperikova, E., Cuevas, N. H., and Frank Morrison, H., 2005, Natural field induced polarization for mapping of deep mineral deposits: A field example from Arizona, Geophysics, 70, B61-B66. https://doi.org/10.1190/1.2122410
  17. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., and Christiansen, A. V., 2012, Mapping of landfills using time-domain spectral induced polarization data: The Eskelund case study, Near Surface Geophysics, 10, 575-586.
  18. Guptasarma, D., 1984, Positivity of the coincident loop transient electromagnetic response, Geophysics, 49, 194-194. https://doi.org/10.1190/1.1441651
  19. Hallbauer-Zadorozhnaya, V. Y., Santarato, G., Zeid, N. A., and Bignardi, S., 2016, A non-linear induced polarization effect on transient electromagnetic soundings, Journal of Applied Geophysics, 133, 16-24. https://doi.org/10.1016/j.jappgeo.2016.07.014
  20. Hallof, P. G., 1964, A comparison of the various parameters employed in the variable-frequency induced-polarization method, Geophysics, 29, 425-433. https://doi.org/10.1190/1.1439376
  21. Hodges, G., and Chen, T., 2014, IP effect in Airborne TDEM data?: Model studies and field examples, 84th Ann. Internat. Mtg. Soc. Expl. Geophys., SEG Technical Program Expanded Abstracts 2014, 828-832.
  22. Hoheisel, A., Hordt, A., and Hanstein, T., 2004, The influence of induced polarization on long-offset transient electromagnetic data, Geophysical Prospecting, 52, 417-426. https://doi.org/10.1111/j.1365-2478.2004.00426.x
  23. Hohmann, G. W., 1975, Three-dimensional induced polarization and electromagnetic modeling, Geophysics, 40, 309-324. https://doi.org/10.1190/1.1440527
  24. Hohmann, G. W., Kintzinger, P. R., Van Voorhis, G. D., and Ward, S .H., 1970, Evaluation of the measurement of induced electrical polarization with an inductive system, Geophysics, 35, 901-915. https://doi.org/10.1190/1.1440136
  25. Honig, M., and Tezkan, B., 2007, 1D and 2D Cole-Coleinversion of time-domain induced-polarization data, Geophysical Prospecting, 55, 117-133. https://doi.org/10.1111/j.1365-2478.2006.00570.x
  26. Inman, J. R., 1975, Resistivity inversion with ridge regression, Geophysics, 40, 798-817. https://doi.org/10.1190/1.1440569
  27. Jang, H., Kim, H. J., and Nam, M. J., 2016, In-Loop Transient Electromagnetic Responses with Induced Polarization Effects of Deep-Sea Hydrothermal Deposits, IEEE Transactions on Geoscience and Remote Sensing, 54, 7272-7278. https://doi.org/10.1109/TGRS.2016.2599003
  28. Johansson B., Jones S., Dahlin T. and Flyhammar P., 2007, Comparisons of 2D- and 3D-Inverted Resistivity Data As Well As of Resistivity- and IP-Surveys on a Landfill, Near Surface 2007, Istanbul, Turkey, Expanded Abstracts, 42.
  29. Kang, S., Oldenburg, D. W., Yang, D., and Marchant, D., 2014, On recovering induced polarization information from airborne time domain EM data, SEG Technical Program Expanded Abstracts 2014, Society of Exploration Geophysicists, 1785-1789.
  30. Kwan, K., Prikhodko, A., Legault, J. M., and Goncharov, E., 2015, Airborne Inductively Induced Polarization effects in and their removal from the VTEM data from Mirny, Russia, SEG Technical Program Expanded Abstracts 2015, Society of Exploration Geophysicists, 2032-2036.
  31. Kemna, A., and Binley, A., 1996, Complex electrical resistivity tomography for contaminant plume delineation, Proc. 2nd Meeting on Environmental and Engineering Geophysics, Environ. Eng. Geophys, Soc., Eur. Section, 196-199.
  32. Kemna, A., Binley, A., Ramirez, A., and Daily, W., 2000, Complex resistivity tomography for environmental applications, Chemical Engineering Journal, 77, 11-18. https://doi.org/10.1016/S1385-8947(99)00135-7
  33. Kemna, A., Binley, A. M., and Slater, L., 2004, Cross-borehole IP imaging for engineering and environmental applications, Geophysics, 69, 97-107. https://doi.org/10.1190/1.1649379
  34. Kozhevnikov, N. O., and Antonov, E. Y., 2008, Inversion of TEM data affected by fast-decaying induced polarization: Numerical simulation experiment with homogeneous halfspace, Journal of Applied Geophysics, 66, 31-43. https://doi.org/10.1016/j.jappgeo.2008.08.001
  35. Kozhevnikov, N. O., and Artyomenko, I. V., 2004, Modelling the effect of dielectric relaxation in frozen ground on the results of the transient electromagnetic measurements, Earth's Cryosphere, 8, 30-39.
  36. LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A., and Owen, E., 1996, The effects of noise on Occam's inversion of resistivity tomography data, Geophysics, 61, 538-548. https://doi.org/10.1190/1.1443980
  37. Leroux, V., Dahlin, T., and Rosqvist, H., 2010, Time-domain IP and Resistivity Sections Measured at Four Landfills with Different Contents, Near Surface 2010, Zurich, Switzerland, Expanded Abstracts, P09.
  38. Loke, M. H., Chambers, J. E., and Ogilvy, R. D., 2006, Inversion of 2D spectral induced polarization imaging data, Geophysical Prospecting, 54, 287-301. https://doi.org/10.1111/j.1365-2478.2006.00537.x
  39. Marchant, D., Haber, E., and Oldenburg, D. W., 2012, Inductive source induced polarization, Geophysical Journal International, 192, 602-612.
  40. Marchant, D., Haber, E., and Oldenburg, D. W., 2014, Threedimensional modeling of IP effects in time-domain electromagnetic data, Geophysics, 79, E303-E314. https://doi.org/10.1190/geo2014-0060.1
  41. Manzella, A., 1973, Geophysical methods in geothermal exploration, Apuntes de clases. Pisa, Italia: Italian National Research Council International Institute for Geothermal Research, http://www.cec.uchile.cl/-cabierta/revista/12/articulos/pdf/A_Manzella.pdf (Se accedio el 10 de agosto de 2009).
  42. Mooney, H. M., Orellana, E., Pickett, H., and Tornheim, L., 1966, A resistivity computation method for layered earth models, Geophysics, 31, 192-203. https://doi.org/10.1190/1.1439733
  43. Morrison, H. F., Phillips, R. J., and O'brien D. P., 1969, Quantitative interpretation of transient electromagnetic fields over a layered half space, Geophysical Prospecting, 17, 82-101. https://doi.org/10.1111/j.1365-2478.1969.tb02073.x
  44. Nordsiek, S., and Weller, A., 2008. A new approach to fitting induced-polarization spectra, Geophysics, 73, F235-F245. https://doi.org/10.1190/1.2987412
  45. Oehler, D. Z., and Sternberg, B. K., 1984, Seepage-Induced Anomalies, AAPG Bulletin, 68, 1121-1145.
  46. Oldenburg, D. W., 1978, the Interpretation of Direct Current Resistivity Measurements, Geophysics, 43, 610. https://doi.org/10.1190/1.1440840
  47. Oldenburg, D. W., and Li, Y., 1994, Inversion of induced polarization data, Geophysics, 59, 1327-1341. https://doi.org/10.1190/1.1443692
  48. Oldenburg, D. W., and Li, Y., 2000, 3-D inversion of induced polarization data, Geophysics, 65, 1931. https://doi.org/10.1190/1.1444877
  49. Orozco, A. F., Kemna, A., Oberdorster, C., Zschornack, L., Leven, C., Dietrich, P., and Weiss, H., 2012, Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging, Journal of Contaminant Hydrology, 136, 131-144.
  50. Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43, 588-609. https://doi.org/10.1190/1.1440839
  51. Revil, A., Karaoulis, M., Johnson, T., and Kemna, A., 2012, Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology, Hydrogeology Journal, 20, 617-658. https://doi.org/10.1007/s10040-011-0819-x
  52. Risk, G. F., 1975, Detection of buried zones of fissured rock in geothermal fields using resistivity anisotropy measurements, Geophysical papers submitted to the Second UN Symposium on the Development and Use of Geothermal Resources, San Francisco, CA, Ma, 20-29.
  53. Risk, G. F., 1975, Monitoring the boundary of the Broadlands geothermal field, New Zealand, Proc. Second UN Symposium on the Development and Use of Geothermal Resources, San Francisco.
  54. Routh, P. S., Oldenburg, D. W., and Li, Y., 1998. Regularized inversion of spectral IP parameters from complex resistivity data, 68th Ann. Internat. Mtg. Soc. Expl. Geophys., SEG Technical Program Expanded Abstracts 1998, 810-813.
  55. Sasaki, Y., 1994. 3-D resistivity inversion using the finiteelement method, Geophysics, 59, 1839-1848. https://doi.org/10.1190/1.1443571
  56. Schlumberger C., 1920, Etude sur la Prospection Electrique du Sous-sol., Gauthier-Villars, Paris.
  57. Seigel, H., Nabighian, M., Parasnis, D. S., and Vozoff, K., 2007, The early history of the induced polarization method, The Leading Edge, 26, 312-321. https://doi.org/10.1190/1.2715054
  58. Seigel, H. O., 1959, Mathematical formulation and type curves for induced-polarization, Geophysics, 24, 547-565. https://doi.org/10.1190/1.1438625
  59. Shi, W., Rodi, W., and Morgan, F. D., 1998, 3-D induced polarization inversion using complex electrical resistivities, Symp. on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP1998), Proc. Environ. Eng. Geophys., 785-794.
  60. Slater, L. D., and Sandberg, S. K., 2000, Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients, Geophysics, 65, 408. https://doi.org/10.1190/1.1444735
  61. Smith, R., 2016, Induced-polarization effects in airborne electromagnetic data: Estimating chargeability from shape reversals, SEG Technical Program Expanded Abstracts 2016, Society of Exploration Geophysicists, 2211-2217.
  62. Smith, R. S., 1988, A plausible mechanism for generating negative coincident-loop transient electromagnetic responses, Ph.D. Dissertation, University of Toronto, Toronto, Canada.
  63. Smith, R. S., and West, G. F., 1988, Inductive interaction between polarizable conductors: An explanation of a negative coincidentloop transient electromagnetic response, Geophysics, 53, 677-690. https://doi.org/10.1190/1.1442502
  64. Smith, R. S., and West, G. F., 1989, Field examples of negative coincident-loop transient electromagnetic responses modeled with polarizable half-planes, Geophysics, 54, 1491-1498. https://doi.org/10.1190/1.1442613
  65. Sogade, J. A., Scira-Scappuzzo, F., Vichabian, Y., Shi, W., Rodi, W., Lesmes, D. P., and Morgan, F. D., 2006, Induced-polarization detection and mapping of contaminant plumes, Geophysics, 71, B75-B84. https://doi.org/10.1190/1.2196873
  66. Son, J. S., Kim, J. H., and Yi, M. J., 2007, A new algorithm for SIP parameter estimation from multi-frequency IP data: Preliminary results, Exploration Geophysics, 38, 60-68. https://doi.org/10.1071/EG07009
  67. Spies, B. R., 1980, A field occurrence of sign reversals with the transient electromagnetic method, Geophysical Prospecting, 28, 620-632. https://doi.org/10.1111/j.1365-2478.1980.tb01247.x
  68. Sternberg, B. K., and Oehler, D. Z., 1984, Electrical methods for hydrocarbon exploration: I. Induced polarization (INDEPTH) method: unconventional methods in exploration for petroleum and natural gas III, Proc. Symp. III, Unconventional Methods in Exploration for Petroleum and Natural Gas, Dallas, Texas, SMU Press, 188-201.
  69. Sumner, J. S., 1976, Principles of Induced Polarization for Geophysical Exploration, Elsevier, Amsterdam.
  70. Syukri, M., Kamaruddin, N. A., and Saad, R., 2014, The Application of Induced Polarization and Chargeability for Geothermal Fluid in Volcanic Area, Northern Sumatra, Electronic Journal of Geotechnical Engineering, 19, 2411-2417.
  71. Swift Jr, C. M., 1971, Theoretical magnetotelluric and Turam response from two-dimensional inhomogeneities, Geophysics, 36, 38-52. https://doi.org/10.1190/1.1440162
  72. Thanassoulas, C., 1991, Geothermal exploration using electrical methods, Geoexploration, 27(3), 321-350. https://doi.org/10.1016/0016-7142(91)90005-W
  73. Vanhala, H., 1997, Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method, Geophysical Prospecting, 45, 303-326. https://doi.org/10.1046/j.1365-2478.1997.00338.x
  74. Ward, S. H., and Sill, W. R., 1982, Resistivity, induced polarization, and self-potential methods in geothermal exploration (No. DOE/ID/12079-90; ESL-108), Utah Univ., Salt Lake City (USA).
  75. Weidelt, P., 1982, Response characteristics of coincident loop transient electromagnetic systems, Geophysics, 47, 1325-1330. https://doi.org/10.1190/1.1441393
  76. Weller, A., and Borner, F. D., 1996, Measurements of spectral induced polarization for environmental purposes, Environmental Geology, 27, 329-334. https://doi.org/10.1007/BF00766702
  77. Weller, A., Seichter, M., and Kampke, A., 1996, Induced-polarization modelling using complex electrical conductivities. Geophysical Journal International, 127, 387-398. https://doi.org/10.1111/j.1365-246X.1996.tb04728.x
  78. Winchen, T., Kemna, A., Vereecken, H., and Huisman, J.A., 2009, Characterization of bimodal facies distributions using effective anisotropic complex resistivity: A 2D numerical study based on Cole-Cole models, Geophysics, 74, A19-A22. https://doi.org/10.1190/1.3113986
  79. Wright, P. M., Ward, S. H., Ross, H. P., and West, R. C., 1985, State-of-the-art geophysical exploration for geothermal resources, Geophysics, 50, 2666-2696. https://doi.org/10.1190/1.1441889
  80. Yuval and Oldenburg, D. W., 1996, DC resistivity and IP methods in acid mine drainage problems - results from the Copper Cliff mine tailings impoundments, Journal of Applied Geophysics, 34, 187-198. https://doi.org/10.1016/0926-9851(95)00020-8
  81. Zisser, N., and Nover, G., 2009, Anisotropy of permeability and complex resistivity of tight sandstones subjected to hydrostatic pressure, Journal of Applied Geophysics, 68, 356-370. https://doi.org/10.1016/j.jappgeo.2009.02.010
  82. Zohdy, A. A., Anderson, L. A., and Muffler, L. J. P., 1973, Resistivity, self-potential, and induced-polarization surveys of a vapor-dominated geothermal system, Geophysics, 38, 1130-1144. https://doi.org/10.1190/1.1440400