• Title/Summary/Keyword: induced ground

Search Result 916, Processing Time 0.028 seconds

The Effects of the Wave Propagation Path of Ground Vibration Induced by the Subway Train on the Reduction of Vibration Level (지하철 주변 지반진동의 전파경로가 진동레벨 감쇠에 미치는 영향)

  • Shin, Han-Chul;Cho, Sun-Kyu;Yang, Shin-Chu;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.631-640
    • /
    • 2009
  • In this paper, Numerical analysis was conducted to study on the reduction of ground vibration level induced by subway train. The analytical results indicated that the soil properties were the predominant factor affecting the ground vibration when the tunnel was located in the soil layer. On the other hand, the rock properties were the predominant one when the tunnel was located in the rock layer. The effects of the angle between the vertical line of vibration source and the receive point on the reduction of vibration level were also evaluated. There were little difference in the reduction of vibration level when the receive point was located within $30^{\circ}$. The vibration level, however, rapidly decreased when the angle between the two points was larger than $40^{\circ}$.

Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground (점토지반에서 터널굴착에 따른 상부 블록구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.175-183
    • /
    • 2014
  • This study investigates the response of structures to tunnelling-induced ground movements in clay ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), and tunnel ground condition (soft clay and stiff clay). Four-story block-bearing structures have been used because the structures can easily be characterized of the extent of damages with crack size and distribution. Numerical parametric studies have been used to investigate of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and tunnel ground condition and provide a relationship chart among them. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in clay ground.

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(II) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(II))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.248-259
    • /
    • 2010
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces one example of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, the measured data obtained during construction process, were analysed, the effects of relatively deeper excavation than the specification on one excavation side and rapid drawdown of ground water level on the other excavation side were deeply investigated from the viewpoint of mutual influences between ground deformations of both excavation sides and strut axial force changes. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Stability Analysis of a Slope in Unsaturated Weathered Residual Soil Considering the Rainfall Characteristics (강우특성을 고려한 불포화 풍화잔류토 사면의 안정성 해석)

  • Lee, Kang-Il;Chang, Yong-Chai;Kim, Tae-Hoon;Chung, Youn-In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.5-14
    • /
    • 2006
  • It has been reported that the failure of a slope in weathered soils or rocks induced by intensive rainfall occurs mainly within 2.0m below the ground surface, and that the effect of rainfall on the rise of the ground water level is not significant if the ground water level inside the slope is not so high before rainfall. Most slopes in Korea, however, have been examined to rather fail at the deeper part since they are usually designed on the basis of assumption that the ground water level rises up to the surface when raining. In this study, the rise of ground water level and slope stability were examined in order to verify the appropriateness of the current ground water level condition that has a significant effect on slope stability using the average daily rainfall in Seoul for the last 30 years. The result showed that the ground water level appears to rise up to 6.0~41.0% of the slope height respectively, and therefore the currently applied condition of ground water level may be somewhat overestimated.

  • PDF

A Study on Tunnel Loads in an Unconsolidated Ground with Inclined Layers (지층이 경사진 미고결 층상지반에서의 터널 작용토압에 관한 연구)

  • Park, Si Hyun;Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.275-282
    • /
    • 2006
  • Since tunnels are linear type structures that have a long extent in comparison to their excavation or inner section, tunnels must be constructed in various ground conditions. In this study, laboratory model tests and theoretical analysis on a tunnel loads are carried out in the unconsolidated ground with inclined layers for tunnel excavation. Laboratory model tests are performed with the variation in the angle of the inclined layers and tunnel depth for the model ground with inclined layers. As for the ground materials, two dimensional model ground is prepared with aluminum rods and blocks with no cohesion, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. Moreover tunnel load equation are newly induced so that comparisons between model test results and the theoretical results are conducted as well.

Characteristics of Wind Noise from Overhead Transmission Facilities (가공 송전설비의 소음 특성)

  • 추장희;김상범;신구용;이성두;이동일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.465-472
    • /
    • 2001
  • This paper describes the characteristics of wind induced noise from high-voltage overhead transmission facilities which include transmission lines. insulator strings. and aviation beacon spheres installed on the overhead ground wires. High-voltage overhead transmission lines generate an audible wind noise due to the alternate shedding of wind-induced vortices. The frequency spectrum from the insulator strings reveals its resonance peak. This resonance sound mechanism has been supposed the self-excitation phenomenon of the resonance and the velocity fluctuation. The booming noises from the aviation beacon spheres are detected and analysed.

  • PDF

Development of a Computer Program for Analysis of Induced Lightning Overvoltages on Overhead Distribution Lines (가공배전선로 유도뢰 해석 프로그램 개발)

  • Lee, Young-Han;Jung, Dong-Hak;Ha, Bok-Nam;NamKung, Do;Yoo, Hyun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.683-685
    • /
    • 1996
  • A computer program for calculation of induced lightning overvoltages on the multiconductor overhead distribution lines has been developed. This program is very useful in a wide range of applications for investigating the effects on distribution lines of lightning protection equipment such as lightning arresters, overhead ground wire and arcing devices.

  • PDF

Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions

  • Shahbazi, Parisa;Taghikhany, Touraj
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • Variable Curvature Friction Pendulum (VCFP) bearing is one of the alternatives to control excessive induced responses of isolated structures subjected to near-fault ground motions. The curvature of sliding surface in this isolator is varying with displacement and its function is non-spherical. Selecting the most appropriate function for the sliding surface depends on the design objectives and ground motion characteristics. To date, few polynomial functions have been experimentally tested for VCFP however it needs comprehensive parametric study to find out which one provides the most effective behavior. Herein, seismic performance of the isolated structure mounted on VCFP is investigated with two different polynomial functions of the sliding surface (Order 4 and 6). By variation of the constants in these functions through changing design parameters, 120 cases of isolators are evaluated and the most proper function is explored to minimize floor acceleration and/or isolator displacement under different hazard levels. Beside representing the desire sliding surface with adaptive behavior, it was shown that the polynomial function with order 6 has least possible floor acceleration under seven near-field ground motions in different levels.

Depletion Kinetics of the Ground State CrO Generated from the Reaction of Unsaturated Cr(CO)x with O2 and N2O

  • Son, H.S.;Ku, J.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.184-188
    • /
    • 2002
  • Unsaturated $Cr(CO)_x(1{\leq}x{\leq}5)$molecules were generated in the gas phase from photolysis of $Cr(CO)_6$vapor in He using an unfocussed weak UV laser pulse and their reactions with $O_2$ and $N_2O$ have been studied. The formation and disappearance of the ground state CrO molecules were identified by monitoring laser-induced fluorescence(LIF) intensities vs delay time between the photolysis and probe pulses. The photolysis laser power dependence as well as the delay time dependence of LIF intensities from the CrO orange system showed different behavior as those from ground state Cr atoms, suggesting that the ground state CrO molecules were generated from the reaction between $O_2/N_2O$ and photo-fragments of $Cr(CO)_6$ by one photon absorption. The depletion rate constants for the ground state CrO by $O_2$ and $N_2O$ are $5.4{\pm}0.2{\times}10^{-11}$ and $6.5{\pm}0.4{\times}10^{-12}cm^3molecule^{-1}s^{-1}$, respectively.

Study on the Prediction of Ground-borne Vibration Induced by Subway (지하철에 의한 지반진동 예측에 관한 연구)

  • 장서일;김득성;이재원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.175-184
    • /
    • 2004
  • Ground-borne noise and vibration generated by underground transit system has been recognized as an important environmental problem. This study reviews several of the procedures that have been used to predict ground-borne vibration. The vibration responses are measured at three sites that have different soil qualities. The measured vibration levels are compared with the predicted results by previously used vibration level prediction models. There are some drawbacks to apply these prediction models to selected sites because most of the existing prediction models are primarily based on empirical data and all of them lack of analytical models for the mechanism of ground-borne vibration generation. radiation, and propagation. In this study a numerical method, which is based on explicit differential method, is used to compensate for the shortcomings of existing prediction models. Although numerically computed results are not quantitatively in good agreement with the measured results, the trends are comparable in the sense that vibration level does not decrease monotonically with distance. Also, the site with the deepest tunnel gives the highest vibration level.