• Title/Summary/Keyword: induced ground

Search Result 916, Processing Time 0.024 seconds

A study on the average wind load characteristics and wind-induced responses of a super-large straight-cone steel cooling tower

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Zhao, L.;Tamura, Y.
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.433-457
    • /
    • 2017
  • As a novel typical wind-sensitive structure, the wind load and wind-induced structural behaviors of super-large straight-cone cooling towers are in an urgent need to be addressed and studied. A super large straight-cone steel cooling tower (189 m high, the highest in Asia) that is under construction in Shanxi Power Plant in China was taken as an example, for which four finite element models corresponding to four structural types: the main drum; main drum + stiffening rings; main drum + stiffening rings + auxiliary rings (auxiliary rings are hinged with the main drum and the ground respectively); and main drum + stiffening rings + auxiliary rings (auxiliary rings are fixed onto the main drum and the ground respectively), were established to compare and analyze the dynamic properties and force transferring paths of different models. After that, CFD method was used to conduct numerical simulation of flow field and mean wind load around the cooling tower. Through field measurements and wind tunnel tests at home and abroad, the reliability of using CFD method for numerical simulation was confirmed. On the basis of this, the surface flow and trail characteristics of the tower at different heights were derived and the wind pressure distribution curves for the internal and external surfaces at different heights of the tower were studied. Finally, based on the calculation results of wind-induced responses of the four models, the effects of stiffening rings, auxiliary rings, and different connecting modes on the dynamic properties and wind-induced responses of the tower structure were derived and analyzed; meanwhile, the effect mechanism of internal suction on such kind of cooling tower was discussed. The study results could provide references to the structure selection and wind resistance design of such type of steel cooling towers.

A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis

  • Karira, Hemu;Kumar, Aneel;Hussain Ali, Tauha;Mangnejo, Dildar Ali;Mangi, Naeem
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.169-185
    • /
    • 2022
  • The urbanization and increasing rate of population demands effective means of transportation system (basement and tunnels) as well as high-rise building (resting on piled foundation) for accommodation. Therefore, it unavoidable to construct basements (i.e., excavation) nearby piled foundation. Since the basement excavation inevitably induces soil movement and stress changes in the ground, it may cause differential settlements to nearby piled raft foundation. To understand settlement and load transfer mechanism in the piled raft due to excavation-induced stress release, numerical parametric studies are carried out in this study. The effects of excavation depths (i.e., formation level) relative to piled raft were investigated by simulating the excavation near the pile shaft (i.e., He/Lp=0.67), next to (He/Lp=1.00) and below the pile toe (He/Lp=1.33). In addition, effects of sand density and raft fixity condition were investigated. The computed results have revealed that the induced settlement, tilting, pile lateral movement and load transfer mechanism in the piled raft depends upon the embedded depth of the diaphragm wall. Additional settlement of the piled raft due to excavation can be account for apparent loss of load carrying capacity of the piled raft (ALPC). The highest apparent loss of piled raft capacity ALPC (on the account of induced piled raft settlement) of 50% was calculated in in case of He/Lp = 1.33. Furthermore, the induced settlement decreased with increasing the relative density from 30% to 90%. On the contrary, the tilting of the raft increases in denser ground. The larger bending moment and lateral force was induced at the piled heads in fixed and pinned raft condition.

Lateral Earth Pressure Caused by Action on Earth Retaining Wall in Clay Foundation Ground with Consideration of Construction Speed (지중 구조물에 작용하는 측방토압에 대한 성토 재하 속도의 영향)

  • Im Eun-Sang;Lee Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.57-68
    • /
    • 2004
  • When an embankment is constructed on soft clay ground, the lateral displacement generally called as lateral flow is generated in the foundation ground. It strongly affects stabilities of structures, such as foundation piles and underground pipes, in and on the foundation ground. The lateral earth pressure induced by the lateral flow is influenced by the magnitude and construction speed of embankment, the geometric conditions and geotechnical characteristics of the embankment, and the foundation ground, and so on. Accurate methods for estimating the lateral earth pressure have not ever been established because the lateral flow of a foundation ground shows very complicated behavior, which is caused by the interaction of shear deformation and volumetric deformation. In this paper, a series of model tests were carried out in order to clarify effects of construction speed of an embankment on the lateral earth pressure in a foundation ground were design. It was found that the magnitude and the distribution of the lateral earth pressure and its change with time are dependent on the construction speed of the embankment. It was found that a mechanism for the lateral earth pressure was generated by excess pore water pressure due to negative dilatancy induced by shear deformation under the different conditions of construction speeds of embankments.

Proposal of the Development Direction on the Special Act on Underground Safety Management for Preparation of the Proactive Underground Safety Management System (선제적 지하안전관리체계 마련을 위한 지하안전관리에 관한 특별법의 발전방향 제시)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.17-27
    • /
    • 2018
  • Sinkholes have occurred in various places around the world and concerns about public safety have been raised in recent years. Particularly, a ground subsidence may occur due to a variety of conditions when developing underground spaces. Ground subsidence refers to the sinking of the Earth's surface caused by the loss of the soil constituting ground due to a certain artificial cause in the ground. Ground subsidence is induced by artificial causes such as the leakage of water supply/sewage pipes and groundwater disturbance, and it is different from a sinkhole, where the sinking of the Earth's surface is induced by the cavity formed due to the melting of limestone in the ground with limestone bedrock. In recent underground development in the urban areas of Korea, damages to surrounding buildings have frequently led to many difficulties with civil complaints and compensation issues, and the collapse of some buildings has resulted in the loss of lives and property. Accordingly, the central government has legislated the Special Act on Underground Safety Management, which will take effect from January 1, 2018. This law specifies an underground safety management system for securing underground safety, under which underground safety impact assessment is performed for projects involving underground excavation work that exceeds a certain size, and safety inspection is regularly performed for underground facilities and the surrounding ground. In this study, the contents of the special act on underground safety management are reviewed, and the direction of development of underground safety policy for preparing preemptive underground safety management preparation and response system is suggested.

Utilization of induced polarization for predicting ground condition ahead of tunnel face in subsea tunnelling: laboratory test (유도분극을 활용한 해저터널 굴착면 전방 지반상태 예측: 실내실험)

  • Park, Jinho;Lee, Kang-Hyun;Lee, Seong-Won;Ryu, Young-Moo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.383-392
    • /
    • 2015
  • In subsea tunnelling, prediction of the fractured zone (or water bearing zone) ahead of tunnel face saturated by seawater with high water pressure has been a key factor for safe construction. This study verified the feasibility of utilizing induced polarization (IP) survey at tunnel face for predicting the ground condition ahead of the subsea tunnel face. A pore model was proposed to compute chargeability in granular material, and the relationship correlating chargeability with the variables affecting the chargeability was derived from the model. Parametric study has been performed on the variables to figure out the most influential factors affecting the chargeability. The results of the parametric study show that the size of narrow pores ($r_1$) and the salinity of pore water are the most influential factors on chargeability. Laboratory tests were conducted on various types of ground condition by changing the salinity of pore water, the thickness of the fracture zone and the existence of gouge (weathered granite) within the joints of the fractured zone to figure out the effect of the ground characteristics on the IP phenomenon. Test results show that the chargeability of the fractured zone saturated by seawater increases if the joints in the fractured zone are filled with gouge since the infilled gouge will decrease the size of narrow pores ($r_1$).

Porewater Pressure Buildup Mode Induced in Near-field of Open-ended Pipe Pile during Earthquake and Sequake (지진과 해진시 개단강관말뚝 주변에 유발된 간극수압의 발생 양상)

  • 최용규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.23-30
    • /
    • 1998
  • During an earthquake, there are three components of excitation : horizontal excitation of the ground, vertical excitation of the pile due to superstructure feedback produced by vertical excitation of the ground, and the seawater excitation by the vertical ground shaking, that is, "the seaquake." These excitations could have effects on the pore pressure buildup mode induced in the near-field of open-ended pile and the soil plugs in open-ended pipe piles installed at offshore sites. While the ground and pile excitation could be modeled by exciting the soil and pile with simulated motions, seaquake excitation induced by the vertical ground shaking can be modeled by pulsing the water pressure at the seabed. The objectives of this study were to observe buildup trend for the porewater pressures developed in near-field of open-ended pipe pile installed in the calibration chamber during the simulated earthquake and seaquake and, also to confirm the cause for reduction of soil plugging according to pore pressure buildup. During the simulated horizontal seismic motion, there was no upward flow through soil plug because the similar magnitude of excess porewater pressure were occurred at the top and under the toe of soil plug. During the horizontal seismic motion, relatively higher hydraulic gradients caused upward flow in the soil plug and then the degradation of plugging resistance was about 20%. During seaquake, in the case of the open-ended pile installed in a deep sea with more than 220m of water depth, soil plug failed completely because of high upward hydraulic gradients through soil plug.soil plug.

  • PDF

Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data (파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로)

  • Kim, Tae-Hyung;Nam, Jung-Man;Kim, In-Sok;Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.27-40
    • /
    • 2014
  • So far, studies on the settlement of breakwater have mainly been conducted through numerical model tests focusing on an analysis or through the laboratory wave tank tests using a scaled model. There has not been a study on the settlement that is measured in an actual breakwater structure. This study analyzed the data of settlement that has been measured in an actual caisson breakwater for a long time and the characteristics and causes of wave-induced settlement in the caisson (including beneath ground), based on qualitative aspect, were examined. The analysis revealed that wave clearly has an effect on the settlement in caisson, especially in the condition of high wave such as typhoon. Caisson settlement is caused by the liquefaction of ground, which is due to the increase of excess pore pressure, the combination of oscillatory excess pore pressure and residual excess pore water pressure, and the solidification process of ground due to dissipation of the accumulated excess pore pressure. The behavior of excess pore pressure in the ground beneath the caisson is entirely governed by the behavior of the caisson. Ground that has gone through solidification is not likely to go through liquefaction in a similar or a smaller wave condition and consequently, the possibility of settlement is reduced.

Numerical Study on Ground Vibration Reduction and Fragmentation in a Controlled Blasting Utilizing Directional U Shape Charge Holder (U형 장약홀더를 이용한 발파공법에서 지반진동 저감특성 및 파괴효율에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Baek, Beom-Hyun;Oh, Se-Wook;Han, Dong-Hun;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • It is necessary to minimize ground vibration and noise due to blasting work in urban environment. The blast induced ground vibration and noise are generally generated by a portion of detonation energy, where most of the energy is utilized for rock breakage and movement of rock mass. Recently a blast method utilizing U-shaped steel charge holder was suggested to reduce the ground vibration without decreasing destructive power toward the free surface. In this study, single hole blasting utilizing U-shaped steel charge holder were simulated and the stress waves caused by the detonation of explosives were monitored using AUTODYN software. In order to examine the fragmentation efficiency of the U-shaped steel charge holder, one free face blasting models which adapt the blast induced stress waves were simulated by dynamic fracture process analysis (DFPA) code. In addition, the general blasting models were also simulated to investigate the fragmentation effectiveness of the U-shaped steel charge holder in rock blasting.

Influence of Rotating Wheel and Moving Ground Condition to Aerodynamic Performance of 3-Dimensional Automobile Configuration (돌아가는 바퀴 및 이동지면 조건이 3차원 자동차 형상의 공력성능에 미치는 영향에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Hoon-Il;Ku, Yo-Cheon;Kee, Jung-Do;Hong, Dong-Hee;Kim, Kyu-Hong;Lee, Dong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.100-107
    • /
    • 2010
  • This paper gives new conceptual descriptions of drag reduction mechanism owing to rotating wheel and moving ground condition when dealing with automotive aerodynamics. Using Computational Fluid Dynamics (CFD), flow simulation of three dimensional automobile configuration made by Vehicle Modeling Function (VMF) is performed and the influence of wheel arch, wheels, rotating wheel & moving ground condition to the automotive aerodynamic performance is analyzed. Finally, it is shown that rotating wheel & moving ground condition decreases automotive aerodynamic drag owing to the reduction of the induced drag led by the decrease of COANDA flow intensity of the rear trunk flow.

Applicability Study on Deep Mixing for Urban Construction (심층혼합처리 공법의 도심지 공사 적용성 연구)

  • Kim, Young-Seok;Choo, Jin-Hyun;Cho, Yong-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.500-506
    • /
    • 2011
  • The deep mixing method, which is generally considered as a method for improving soft ground, is assessed in terms of its applicability for urban construction. Using small equipment tailored to perform deep mixing in congested urban areas, deep mixing was performed to reinforce the foundation ground of a retaining wall in a redevelopment site in Seoul. Strengths characteristics, construction vibrations and displacements induced to an adjacent old masonry wall were evaluated by laboratory tests and field monitoring. The results indicate that the strength of ground was improved appropriately whilst the vibrations and displacements induced by deep mixing were slight enough to satisfy the general requirements for construction works in urban environments. Therefore, it is concluded that deep mixing method can be a practical option for foundation methods in urban construction works where minimizing noise and vibrations is an important concern.