• Title/Summary/Keyword: induced electric field

Search Result 454, Processing Time 0.032 seconds

Fast Bayesian Inversion of Geophysical Data (지구물리 자료의 고속 베이지안 역산)

  • Oh, Seok-Hoon;Kwon, Byung-Doo;Nam, Jae-Cheol;Kee, Duk-Kee
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.161-174
    • /
    • 2000
  • Bayesian inversion is a stable approach to infer the subsurface structure with the limited data from geophysical explorations. In geophysical inverse process, due to the finite and discrete characteristics of field data and modeling process, some uncertainties are inherent and therefore probabilistic approach to the geophysical inversion is required. Bayesian framework provides theoretical base for the confidency and uncertainty analysis for the inference. However, most of the Bayesian inversion require the integration process of high dimension, so massive calculations like a Monte Carlo integration is demanded to solve it. This method, though, seemed suitable to apply to the geophysical problems which have the characteristics of highly non-linearity, we are faced to meet the promptness and convenience in field process. In this study, by the Gaussian approximation for the observed data and a priori information, fast Bayesian inversion scheme is developed and applied to the model problem with electric well logging and dipole-dipole resistivity data. Each covariance matrices are induced by geostatistical method and optimization technique resulted in maximum a posteriori information. Especially a priori information is evaluated by the cross-validation technique. And the uncertainty analysis was performed to interpret the resistivity structure by simulation of a posteriori covariance matrix.

  • PDF

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

Effects of SrTiO3-Modification on the Dielectric and Electromechanical Strain Properties of Lead-Free Bi1/2Na1/2TiO3-BiAlO3 Piezoceramics (Bi1/2Na1/2TiO3-BiAlO3 무연 압전 세라믹스의 유전 및 전기 기계적 변형 특성에 대한 SrTiO3 첨가 효과)

  • Lee, Sang Sub;Lee, Chang-Heon;Duong, Trang An;Kim, Dong Hyeok;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.562-568
    • /
    • 2021
  • (Bi1/2Na1/2)TiO3 (BNT)-based ceramics are considered promising candidates for actuator application owing to their excellent electromechanical strain properties However, to obtain large strain properties, there remain several issues such as thermal stability and high operating fields. Therefore, this study investigates a reduction of operating field in (0.98-x)Bi1/2Na1/2TiO3-0.02 BiAlO3-xSrTiO3 (BNT-2BA-100xST, x = 0.20, 0.21, 0.22, 0.23, and 0.24) via analyses of the microstructure, crystal structure, dielectric, polarization, ferroelectric and electromechanical strain properties. The average grain size of BNT-${\underline{2}}$BA-100xST ceramics decreases with increasing ST content. Results of polarization and electromechanical strain properties indicate that a ferroelectric to relaxor state transition is induced by ST modification. As a consequence, a large electromechanical strain of 592 pm/V is obtained at a relatively low electric field of 4 kV/mm in 22 mol% ST-modified BNT-2BA ceramics. We believe that the materials synthesized in this study are promising candidates for actuator applications.

Effects of Electric Stimulation and Activation Conditions on the Fusion and Development of Porcine Somatic Cell Nuclear Transfer Embryos (전기적 융합과 활성화 방법이 돼지 체세포 복제수정란의 체외발달에 미치는 영향)

  • 정기화
    • Journal of Embryo Transfer
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2004
  • The present study was conducted to investigate the effects of fusion and/or activation protocol on in vitro development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine fetal fibroblast cells were transferred into the perivitelline space of enucleated in vitro matured oocytes. Cell fusion and activation were induced simultaneous fusion/activation (SA) or delayed activation (DA) with or without cytochalasin B (CB) treatment with electic pulses in 0.28 M mannitol-based medium. The SCNT embryos were cultured in vitro for 7 days and stained with Hoechst 33342 to determine the number of nuclei. After 7 days culture, cleavage and blastocyst formation rates were 72.4% and 7.6% in SCNT and 76.3% and 20.4% in parthenotes. To examine the effect of electric field strengths on development of SCNT embryos, oocytes were fused two pulses of 110 V/mm, 130 V/mm or 150 V/mm for 30 sec post-injection. The fusion and cleavage rates in 130 V/mm group (70.2% and 72.6%) and 150 V/mm group (72.6% and 70.5%) were higher (P<0.05) than 110 V/mm group (47.1% and 48.6%), respectively. However, the rate of embryos developing to the blastocyst stage (8.1%, 9.7% and 10.7%) were not different among three groups. The cleavage rates and the blastcyst formation rates were not different among three treatment groups (SA group, 71.4% and 9.7%; SA+CB treatment group, 74.7% and 8.0%; DA+CB treatment group, 70.8% and 11.2%, respectively). And, no different in the number of cells in blastocysts was observed among the three groups (22.5$\pm$12.8, 23.3$\pm$11.2 and 21.6$\pm$10.4, respectively). These result suggest that two pulses of 130 V/mm or 150 V/mm for 30 sec with SA treatment or DA treatment are enough for fusion/activation of porcine somatic cell nuclear transfer (SCNT) embryos to develop to the blastocyst stage.

In Vitro Development of Bovine Nuclear Transfer Embryos Reconstructed with Fetal Fibroblasts (태아 섬유아세포로 재구성된 핵치환 소 수정란의 체외발달)

  • Koo, D.B.;Choi, Y.H.;Park, J.S.;Kim, H.N.;Kang, Y.K.;Lee, C.S.;Han, Y.M.;Park, H.D.;Lee, K.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.407-417
    • /
    • 2000
  • The present study was to examine effects of various electrical stimulus treatments used for electro-fusion on the preimplantation development of bovine nuclear transfer (NT) embryos with fetal fibroblast cells. Fetal fibroblast cells were isolated from one fetus at day 45 of gestation in Holstein cow, and passaged 3 to 4 times before being transferred into enucleated oocytes. Single fibroblast cells were individually placed into the perivitelline space of enucleated oocytes by using a micromanipulator. At first, the fusion and developmental rates of reconstructed oocytes were compared between different electric stimulation conditions. When fusion of the reconstructed oocyte was induced by different electric pulse periods (15, 30 and 45 $\mu$sec) at a DC pulse of 1.8 kV/cm, 15 (45.5%, 120/264) or 30 $\mu$ sec group (43.9%, 106/241) showed a higher fusion rate than 45 $\mu$sec group (23.2%, 58/250, P<0.05). However, no difference was detected in the development rate of the fused oocytes to blastocysts between groups. Next experiment was to examine the effects of different electrical field strengths (1.5, 1.8 and 2.1 kV/cm) for 15 $\mu$sec at electrofusion on in vitro development of the NT embryos. As results, there was no difference in the fusion and developmental rates of the NT embryos between electrical strength (P>0.05). Finally, developmental competence of bovine NT embryos with somatic cells was compared with IVF-derived embryos. Of enucleated oocytes fused with fibroblast cells, 27.4% (75/274) developed to the blastocyst stage, which is similar to that (24.5%, 58/237) of IVF-derived embryos. However, mean nuclei number of NT blastocysts was smaller than that of IVF-derived blastocysts. Thus, we have established an optimal condition (1.8 kV/cm, 15 $\mu$sec) for electric fusion of bovine NT oocytes with somatic cells. The present study indicates that bovine reconstructed embryos with somatic cells normally develop to blastocyst stage in vitro, although having smaller nuclei numbers of blastocysts as compared to IVF-derived embryos.

  • PDF

Comparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Dong-Ha;Lee, Hyang-Bong;Shin, Kuan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2941-2948
    • /
    • 2011
  • A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is dependent not only on the kinds of SERS substrates but also on the measurement conditions; thus further characterization is required using other adsorbate molecules such as 1,4-phenylenediisocyanide (1,4-PDI). In fact, no Raman signal was observable when 1,4-PDI was selfassembled on a flat Au substrate, but a distinct spectrum was obtained when 60 nm-sized Au or Ag nanoparticles were adsorbed on the pendent -NC groups of 1,4-PDI. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Au or Ag nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap between them. A higher Raman signal was observed when Ag nanoparticles were attached to 1,4-PDI, irrespective of the excitation wavelength, and especially the highest Raman signal was measured at the 632.8 nm excitation (with the enhancement factor on the order of ${\sim}10^3$), followed by the excitation at 568 and 514.5 nm, in agreement with the finite-difference timedomain calculation. From a separate potential-dependent SERS study, the voltage applied to the planar Au appeared to be transmitted without loss to the Au or Ag nanoparticles, and from the study of the effect of volatile organics, the voltage transmission from Au or Ag nanoparticles to the planar Au also appeared as equally probable to that from the planar Au to the Au or Ag nanoparticles in a nanogap electrode. The response of the Au-Ag nanogap to the external stimuli was, however, not the same as that of the Au-Au nanogap.

Fabrication of Virtual Frisch-Grid CdZnTe ${\gamma}$-Ray Detector (가상 Frisch-그리드를 이용한 CdZnTe 감마선 소자 제작)

  • Park, Chansun;Kim, Pilsu;Cho, PyongKon;Choi, Jonghak;Kim, Jungmin;Kim, KiHyun
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.253-259
    • /
    • 2014
  • Large volume of $6{\times}6{\times}12mm^3$ CdZnTe ${\gamma}$-ray detector was fabricated with CdZnTe single crystals grown by Traveling Heater Method (THM) to evaluate the energy resolution of 662 keV in $^{137}Cs$. Hole tailing effect which originated from the large mobility difference in electron and hole degrade energy resolution of radiation detector and its effects become more severe for a large volume detectors. Generally, single carrier collection technique is very useful method to remove/minimize hole tailing effect and thereby improvement in energy resolution. Virtual Frisch-grid technique is also one of single charge collection method through weighting potential engineering and it is very simple and easily applicable one. In this paper, we characterized CZT detector grown by THM and evaluated the effectiveness of virtual Frisch-grid technique for a high energy gamma-ray detector. The proper position and width of virtual Frisch-grid was determined from electric field simulation using ANSYS Maxwell ver. 14.0. Energy resolution of 2.2% was achieved for the 662 keV ${\gamma}$-peak of $^{137}Cs$ with virtual Frisch-grid CdZnTe detector.

Characterization of the a-Se Film for Phosphor based X-ray light Modulator (형광체 기반 X선 광 변조기를 위한 비정질 셀레늄 필름 특성)

  • Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Youl;Shin, Jung-Wook;Lee, Kun-Hwan;Mun, Chi-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.306-309
    • /
    • 2007
  • PXLM(Phosphor based x-ray light modulator) has a combined structure by phosphor, photoconductor, and liquid crystal and it can realize x-ray image of high resolution in clinical diagnosis area. In this study, we fabricated a photoconductor and investigated electrical and optical properties to confirm application possibility of radiator detector of PXLM structure. As photoconductor, amorphous selenium(a-Se), which is used most in DR(Digital radiography) of direct conversion method, was used and for formation of thin film, it was formed as $20{\mu}m-thick$ by using thermal vacuum evaporation system. For a produced a-Se film, through XRD(X-ray diffraction) and SEM(Scanning electron microscope), we investigated that amorphous structure was uniformly established and through optical measurement, for visible light of 40 $0\sim630nm$, it had absorption efficiency of 95 % and more. After fabricated a-Se film on the top of ITP substrate, hybrid structure was manufactured through forming $Gd_2O_3:Eu$ phosphor of $270{\mu}m-thick$ on the bottom of the substrate. As the result to confirm electrical property of the manufactured hybrid structure, in the case of appling $10V/{\mu}m$, leakage current of $2.5nA/cm^2$ and x-ray sensitivity of $7.31nC/cm^2/mR$ were investigated. Finally, we manufactured PXLM structure combined with hybrid structure and liquid crystal cell of TN(Twisted nematic) mode and then, investigated T-V(Transmission vs. voltage) curve of external light source for induced x-ray energy. PXLM structure showed a similar optical response with T-V curve that common TN mode liquid crystal cell showed according to electric field increase and in appling $50\sim100V$, it showed linear transmission efficiency of $12\sim18%$. This result suggested an application possibility of PXLM structure as radiation detector.

Response Properties of Meridians for focused variable electromagnetic stimulus (접속형 가변 전자계 자극에 대한 경락반응특성)

  • Lee, Gyoun-Jung;Cho, Dong-Guk;Kim, Soo-Byung;Kwon, Sun-Min;Shin, Tae-Min;Lee, Kyoung-Joung;Lee, Yong-Heum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1399-1410
    • /
    • 2009
  • It is a method to treat pain using medication, neurotomy, and surgery. And acupuncture, ultrasound, electric treatment, and magnetic treatment are applied as a alternative physiotherapy. Electronic therapy is useful but it can be affected by impedance of skin or subcutaneous tissue. So, percutaneous stimulation is leading therapy, that is very randomly. We developed the system which can stimulate parts of acupuncture point noninvasively using the focused magnetic field. And we designed the magnetic stimulation electrode which is considered efficiency of the magnetic stimulation. It can make similar stimulation with manual acupuncture. To confirm the availability and reliability we compared Meridian Electronic Potential(MEP) change between manual acupuncture and magnetic stimulation. From this result, we found out the MEP changes of manual acupuncture and magnetic stimulation were similar. And there were various response properties as changes of stimulation method, intensity, and frequency. Also, the MEP change can be induced by electromagnetic stimulation. We confirmed that it is possible to use electromagnetic stimulation as a acupoint stimulation or pain treatment instrument.

The reliability physics of SiGe hetero-junction bipolar transistors (실리콘-게르마늄 이종접합 바이폴라 트랜지스터의 신뢰성 현상)

  • 이승윤;박찬우;김상훈;이상흥;강진영;조경익
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.239-250
    • /
    • 2003
  • The reliability degradation phenomena in the SiGe hetero-junction bipolar transistor (HBT) are investigated in this review. In the case of the SiGe HBT the decrease of the current gain, the degradation of the AC characteristics, and the offset voltage are frequently observed, which are attributed to the emitter-base reverse bias voltage stress, the transient enhanced diffusion, and the deterioration of the base-collector junction due to the fluctuation in fabrication process, respectively. The reverse-bias stress on the emitter-base junction causes the recombination current to rise, increasing the base current and degrading the current gain, because hot carriers formed by the high electric field at the junction periphery generate charged traps at the silicon-oxide interface and within the oxide region. Because of the enhanced diffusion of the dopants in the intrinsic base induced by the extrinsic base implantation, the shorter distance between the emitter-base junction and the extrinsic base than a critical measure leads to the reduction of the cut-off frequency ($f_t$) of the device. If the energy of the extrinsic base implantation is insufficient, the turn-on voltage of the collector-base junction becomes low, in the result, the offset voltage appears on the current-voltage curve.