• Title/Summary/Keyword: indoor positioning system

Search Result 324, Processing Time 0.029 seconds

Radio Beacon-based Seamless Indoor and Outdoor Positioning for Personal Navigation Systems (개인 휴대용 네비게이션을 위한 라디오 비컨 기반 실내외 연속측위 시스템)

  • Kim, Sang-Kyoon;Jang, Yoon-Ho;Bae, Sang-Jun;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.84-92
    • /
    • 2009
  • In this paper, using the received signal strength of radio beacon such as Wi-Fi, Bluetooth, CDMA and GPS signal from the satellite, we propose the system of positioning which considered indoor and outdoor based on the Place Lab. Conventional Place Lab utilize the various positioning parameters to estimate the indoor location. However, this conventional system has limitations with respect to the range and efficiency of usage. Therefore, we defined the converged model of multisensor data and re-organized the Place Lab to overcome the limitation of a conventional system. Proposed system uses the radio beacon signal and GPS signal together to estimate the location. Furthermore, it provides the seamless PNS service with many mobile devices because this system realized by the OSGi bundle. This proposed system has evaluated the performance with SAMSUNG T*OMNIA SCH-M490 smart phone and the result shows the system is able to support the PNS service.

  • PDF

A Testbed of Performance Evaluation for Fingerprint Based WLAN Positioning System

  • Zhao, Wanlong;Han, Shuai;Meng, Weixiao;Zou, Deyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2583-2605
    • /
    • 2016
  • Fingerprint positioning is a main stream and key technique for seamless positioning systems. In this paper, we develop a performance evaluation testbed for fingerprint based Wireless Local Area Network (WLAN) positioning system. The testbed consists of positioning server, positioning terminal, Access Point (AP) units, positioning accuracy analysis system and testing scenarios. Different from other testbeds tended to focus on testing in same situation, in the proposed testbed, a couple of scenarios are set to test the positioning system including indoor and outdoor environments. Handset-side positioning mode and network-side positioning mode are provided simultaneously. Variety of motion models, such as static model, low-speed model and high-speed model are considered as well as different positioning algorithms. Finally, some implementation cases are analyzed to verify the credibility of the testbed.

A Study on the Weight of W-KNN for WiFi Fingerprint Positioning (WiFi 핑거프린트 위치추정 방식에서 W-KNN의 가중치에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.105-111
    • /
    • 2017
  • In this paper, the analysis results are shown about several weights of Weighted K-Nearest Neighbor method, Recently, it is employed for the indoor positioning technologies using WiFi fingerprint which has been actively studied. In spite of the simplest feature, the W-KNN method shows comparable performance to another methods using WiFi fingerprint technology. So W-KNN method has employed in the existing indoor positioning system. It shows positioning error performance according to data preprocessing and weight factor, and the analysis on the weight is very important. In this paper, based on the real measured WiFi fingerprint data, the estimation error is analyzed and the performances are compared, for the case of data processing methods, of the weight of average, variance, and distance, and of the averaging several position of number K. These results could be practically useful to construct the real indoor positioning system.

Analysis of Wi-Fi Signal Characteristics for Indoor Positioning Measurement (실내 위치 측정을 위한 Wi-Fi 신호 특성 분석)

  • Ha, IlKyu;Zhang, Zhehao;Park, HeeJoo;Kim, ChongGun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2177-2184
    • /
    • 2012
  • A different and effective method for indoor positioning system is needed and increased it's importance compare to the outdoor GPS based method. The FingerPrint positioning method is known as a superior method in indoor positioning system that maintains signal strength patterns for RPs(Reference Points) in database and compare the DB with the measured real-time signals on the mobile device. FingerPrint positioning method is necessary to establish an accurate database, but errors can occur by several factors. In this paper, we analyze the signal patterns of each terminal in accordance with connection state of access point and trace that the error in accordance with connection state of access point can be an important error in FingerPrint DB configuration through an experimental case study.

Tag-free Indoor Positioning System Using Wireless Infrared and Ultrasonic Sensor Grid (적외선 및 초음파센서 그리드를 활용한 태그가 없는 실내 위치식별 시스템)

  • Roh, Chanhwi;Kim, Yongseok;Shin, Changsik;Baek, Donkyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • In the most IPS (Indoor Positioning System), it is available to specify the user's movement by sending a specific signal from a tag such as a beacon to multiple receivers. This method is very efficiently used in places where the number of people is limited. On the other hand, in large commercial facilities, it is nearly difficult to apply the existing IPS method because it is necessary to attach a tag to each customer. In this paper, we propose a system that uses an external sensor grid to identify people's movement without using tags. Each sensor node uses both an ultrasonic sensor and an infrared sensor to monitor people's movements and sends collected data to the main server through wireless transmission for easy system maintenance. The operation was verified using the FPGA board, and we designed a VLSI circuit in 180nm process.

Cooperative Positioning System Using Density of Nodes (노드의 밀도를 이용한 상호 협력 위치 측정 시스템)

  • Son, Cheol-Su;Yoo, Nem-Hyun;Kim, Wong-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.198-205
    • /
    • 2007
  • In ubiquitous environment a user can be provided with context-aware services based on his or her current location, time, and atmosphere. LBS(Location-Based Services) play an important role for ubiquitous context-aware computing. Because deployment and maintenance of this specialized equipment is costly, many studies have been conducted on positioning using only wireless equipment under a wireless LAN infrastructure. Because a CPS(Cooperative Positioning System) that uses the RSSI (Received Signal Strength Indicator) between mobile equipments is more accurate than beacon based positioning system, it requires great concentration in its applications. This study investigates the relationship between nodes by analyzing a WiPS (Wireless LAN indoor Positioning System), a similar type of CPS, and proposes a improved WiCOPS-d(Wireless Cooperative Positioning System using node density) to increase performance by determining the convergence adjustment factor based on node density.

Development of Location Based System using Indoor Lenticular Sticker (실내 렌티큘러 스티커를 이용한 위치기반 시스템 개발)

  • Jeong, Seung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.601-606
    • /
    • 2019
  • The lenticular Location Based System is related to a location information technology. The system enables users to inform their location in real time wherever in a room, a building, a ship, a basement. In this paper, we analyze limitations and problems of the existing indoor Positioning System and propose a method of user-oriented location service. The proposed method consists of a lenticular sticker, a database(DB) acquisition and analysis technology. The proposed system can be used as an infrastructure to implement various indoor location-based services. In addition to improve user centered positioning accuracy through the development of location-based systems using indoor lenticular systems, it can be used in a disaster situation.

Verification Techniques of the Distored iBeacon Information for Reliable Indoor Positioning Systems (신뢰성 있는 실내 위치 측위 시스템을 위한 왜곡된 iBeacon 정보의 검증 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.345-347
    • /
    • 2016
  • Recently location based services is being expanded into the indoor service that can not access to the outdoor location informations, such as GPS. Thus, the research and development of an indoor positioning system with BLE(Bluetooth Low Energy) iBeacon technology has expanded. However, RSSI (Received Signal Strength Indicator) that is used as the distance information between the terminal and for positioning iBeacon signal has a problem in that distortion occurs, information such as the signal attenuation and the delay due to the characteristics of radio waves. In this paper, we propose a reliable method of verifying iBeacon signal with the signal distortion problems for reliable indoor positioning systems.

  • PDF

A Study on Dynamic Trigger Threshold in Indoor Positioning System (실내 위치 추정 시스템에서의 동적 트리거 임계값에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.155-161
    • /
    • 2015
  • As the popularity of the smartphone becomes increase, indoor smartphone positioning technology has been actively studied. The acoustic signal generated from the smartphone is received from the several microphones at the relative positioning system, and the trigger signal is proposed to mitigate the multipath effect and the effect is verified. But for the simple trigger method, there would be error occurred according to the variation of the distance or surrounding noise. In this paper, in order to resolve the problems, the dynamic trigger threshold technology is proposed and its effect is verified by the experiment.

Test and Integration of Location Sensors for Position Determination in a Pedestrian Navigation System

  • Retscher, Guenther;Thienelt, Michael
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.251-256
    • /
    • 2006
  • In the work package 'Integrated Positioning' of the research project NAVIO (Pedestrian Navigation Systems in Combined Indoor/Outdoor Environements) we are dealing with the navigation and guidance of visitors of our University. Thereby start points are public transport stops in the surroundings of the Vienna University of Technology and the user of the system should be guided to certain office rooms or persons. For the position determination of the user different location sensors are employed, i.e., for outdoor positioning GPS and dead reckoning sensors such as a digital compass and gyro for heading determination and accelerometers for the determination of the travelled distance as well as a barometric pressure sensor for altitude determination and for indoor areas location determination using WiFi fingerprinting. All sensors and positioning methods are combined and integrated using a Kalman filter approach. Then an optimal estimate of the current location of the user is obtained using the filter. To perform an adequate weighting of the sensors in the stochastic filter model, the sensor characteristics and their performance was investigated in several tests. The tests were performed in different environments either with free satellite visibility or in urban canyons as well as inside of buildings. The tests have shown that it is possible to determine the user's location continuously with the required precision and that the selected sensors provide a good performance and high reliability. Selected tests results and our approach will be presented in the paper.

  • PDF