• Title/Summary/Keyword: indoor position

Search Result 525, Processing Time 0.025 seconds

Modified ORB-SLAM Algorithm for Precise Indoor Navigation of a Mobile Robot (모바일로봇의 정밀 실내주행을 위한 개선된 ORB-SLAM 알고리즘)

  • Ock, Yongjin;Kang, Hosun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.205-211
    • /
    • 2020
  • In this paper, we propose a modified ORB-SLAM (Oriented FAST and Rotated BRIEF Simultaneous Localization And Mapping) for precise indoor navigation of a mobile robot. The exact posture and position estimation by the ORB-SLAM is not possible all the times for the indoor navigation of a mobile robot when there are not enough features in the environment. To overcome this shortcoming, additional IMU (Inertial Measurement Unit) and encoder sensors were installed and utilized to calibrate the ORB-SLAM. By fusing the global information acquired by the SLAM and the dynamic local location information of the IMU and the encoder sensors, the mobile robot can be obtained the precise navigation information in the indoor environment with few feature points. The superiority of the modified ORB-SLAM was verified to compared with the conventional algorithm by the real experiments of a mobile robot navigation in a corridor environment.

Implementation of Indoor Localization System

  • Ryu, Dong-Wan;Kim, Sun-Hyung;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.54-60
    • /
    • 2019
  • In this paper, a localization system for indoor objects is proposed. The proposed system consists of Beacons, LED Cells, Main Cell Controller (MCC), and Display. A Beacon is attached at each indoor object, and each LED cell has Beacon Scanner and VLC Transmitter. The Visual Light Communications (VLC) and Power Line Communications (PLC) methods are used to communicate the signals for localization of indoor objects. And the proposed system is designed, and implemented as a prototype. To certify that our propose d system can exactly localize a given indoor object, we take test for the implemented system as a p rototype. Here the location of the given indoor object is known. Test is done in two ways. The first is to check the operation of the detail of the system, and the second is the position recognition of i ndoor object. The second is the test of the implemented system to correctly detect the location of the indoor object with Beacon, while the object with Beacon is moved from location C to A. The experimental result shows that the system is exactly detect the moving locations. The system has the advantages of using previously installed power lines, and it does not need to use LAN lines or optical cables. The proposed system is usefully applied to indoor object localization area.

Study on the Beacon Signal Characteristic for Efficiency Analysis of Indoor Positioning (실내 위치 측위 효율성 분석을 위한 비콘 신호 특성 연구)

  • Hyun, Mi-Jin;Kim, Bong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, the activity area in the indoor space has been widening. Various types of service technologies have been developed and applied user location, tracking, spatial pattern analysis and environmental analysis in indoor space. BLE-based beacon is used for the service technology in the indoor space. Therefore, in this paper, we collected and analyzed signals for indoor positioning based on beacon. For this purpose, a module was designed to analyze the efficiency of indoor location measurement using beacon. Experimental results show that the accuracy of the measured data at close range is improved. Also, it was analyzed that the more accurate the position data is extracted without the obstacle in the indoor space.

Low-cost System with Handheld Analyzer for Optimizing the Position of Indoor Base Stations

  • Lee, C.C.;Xu, Degang;Chan, George
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.404-420
    • /
    • 2021
  • In this paper, an automatic system of locating the indoor area with weak or no mobile signal was proposed and demonstrated experimentally by using the Internet of Things (IoT) technology. Nowadays, the technicians of mobile services providers need to go along with numerous heavy equipment to measure and record the mobile signal strength at outside environment. Recently, there are systems proposed to do such measurement at outdoor area by using the IoT technology automatically. However, these works could not be applied in the indoor area since there are difficulties to do the indoor mapping and positioning. In this work, the Bluetooth Low Energy (BLE) was used to tackle these two difficulties. After a proper placement of BLE in the testing site, while the technician walk around with a handheld analyzer, the data can be obtained accordingly for further analysis in the proposed system which includes the construction of floor plan, detection of mobile signal strength and suggestion of indoor base stations. The gift wrapping and centroid algorithms were used during the analysis. The experimental results showed that the proposed system successfully demonstrated the indoor mapping, positioning of weak mobile signal area and suggestion of indoor base stations for the normal rectangular rooms with an area of 100 m2 on single floor.

Mapping algorithm for Error Compensation of Indoor Localization System (실내 측위 시스템의 오차 보정을 위한 매핑 알고리즘)

  • Kim, Tae-Kyum;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.109-117
    • /
    • 2010
  • With the advent of new technologies such as HSDPA, WiBro(Wireless Broadband) and personal devices, we can access various contents and services anytime and anywhere. A location based service(LBS) is essential for providing personalized services with individual location information in ubiquitous computing environment. In this paper, we propose mapping algorithm for error compensation of indoor localization system. Also we explain filter and indoor localization system. we have developed mapping algorithms composed of a map recognition method and a position compensation method. The map recognition method achieves physical space recognition and map element relation extraction. We improved the accuracy of position searching. In addition, we reduced position errors using a dynamic scale factor.

Direction Relation Representation and Reasoning for Indoor Service Robots (실내 서비스 로봇을 위한 방향 관계 표현과 추론)

  • Lee, Seokjun;Kim, Jonghoon;Kim, Incheol
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.211-223
    • /
    • 2018
  • In this paper, we propose a robot-centered direction relation representation and the relevant reasoning methods for indoor service robots. Many conventional works on qualitative spatial reasoning, when deciding the relative direction relation of the target object, are based on the use of position information only. These reasoning methods may infer an incorrect direction relation of the target object relative to the robot, since they do not take into consideration the heading direction of the robot itself as the base object. In this paper, we present a robot-centered direction relation representation and the reasoning methods. When deciding the relative directional relationship of target objects based on the robot in an indoor environment, the proposed methods make use of the orientation information as well as the position information of the robot. The robot-centered reasoning methods are implemented by extending the existing cone-based, matrix-based, and hybrid methods which utilized only the position information of two objects. In various experiments with both the physical Turtlebot and the simulated one, the proposed representation and reasoning methods displayed their high performance and applicability.

Synchronizing control of intelligent indoor lift system (지능형 실내 위치전환 시스템의 동기제어)

  • 양호남;양현석;최용제;홍만복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.330-333
    • /
    • 2003
  • In this thesis. the application of the synchronizing control of the intelligent indoor lift system is showed. The separate axes of the indoor lift system are driven independently. PID controller, synchronous flexible logic compensating method and tilt sensor are applied to enhance the performance of the intelligent indoor lift system. the tilt sensor senses the horizontal error of the whole system. PID controller and synchronous flexible logic are used to compensate the synchronous errors of both the separate axes and whole system to be zero. Namely, using not the hardware coupling but the software algorithm. the indoor life system is operated without the error. Before applying the real system, the simulation using matlab testifies the possibility of the lift system. And the realization of the system is demonstrated with two DC servo motors. In the experiment test, flexible logic to compensate the synchronous error is chosen by the comparative method. the indoor lift system has to be considered the loading factor as the disturbance. Because the intelligent indoor lift system is developed to support the patients who don't change for themselves to move. finally, the system which considers the weight of the patient as the disturbance can carry the patients safely without synchronous and position error.

  • PDF

Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site (Visual SLAM의 건설현장 실내 측위 활용성 분석)

  • Kim, Taejin;Park, Jiwon;Lee, Byoungmin;Bae, Kangmin;Yoon, Sebeen;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

Indoor Location Monitoring System Based on WPS (WPS 기반의 실내 위치 모니터링 시스템)

  • Baek, Seung-min;Park, Gun-young;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.851-853
    • /
    • 2013
  • Recently, location-based service as the developed continuously, interest in positioning technology is increasing. As the most famous indoor positioning technology, WPS is a positioning technology using WiFi, which can complement the limits of the indoor positioning to have a GPS. In this paper, to provide a system for monitoring the position of the inside of the user based on the position information that using the RSSI signal of the wireless AP based WPS technology, they grip the location information of the mobile nodes in the indoor. If using the method proposed, it is expected to be applied to various services it is possible to apply the WPS, this is because it is possible to estimate in real time the location distribution of mobile nodes in the indoor.

  • PDF

Efficient Cross-Room Switch Mechanism for Indoor Room-Division-Multiplexing Based Visible Light Communication Network

  • Huang, Zhitong;Xiong, Jieqing;Li, Jianfeng;Ji, Yuefeng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.351-356
    • /
    • 2015
  • Visible light communication (VLC) is considered to be an attractive scheme to realize the broadband wireless communication for an indoor environment. We present a room division multiplexing (RDM) mechanism for an indoor multi-room VLC network, which utilizes the spatial position of the LED lamp in different rooms as a novel dimension of network resource for multiplexing, and thus the network capacity is increased. In such a network, the service interruption caused by user cross-room movement is an important problem, and we propose a double-area-positioning based cross-room switch solution. An experimental platform demonstrates the RDM-deployed VLC network, and validates the performance of the presented switch mechanism.