• Title/Summary/Keyword: indoor environments

Search Result 726, Processing Time 0.025 seconds

TOA Based Indoor Positioning Algorithm in NLOS Environments

  • Lim, Jaewook;Lee, Chul-Soo;Seol, Dong-Min;Jung, Sunghun;Lee, Sangbeom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.121-130
    • /
    • 2021
  • In this paper, we propose a method to improve the positioning accuracy of TOA based indoor positioning system in NLOS environments. TOA based indoor positioning systems have been studied mostly considering LOS environments. However, it is almost impossible to maintain the LOS environments due to obstacles such as people, furniture, walls, and so on. The proposed method in this study compensates the range error caused by the NLOS environments. We confirmed that positioning accuracy of a proposed method is improved than conventional algorithms through simulation and field test.

Exposure Assessment of Biological Agents in Indoor Environments (실내환경에서 생물학적 인자에 대한 노출평가)

  • Park, Ju-Hyeong
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • The Institute of Medicine of the National Academies of Science in the United States concluded in its 2004 report that excessive indoor dampness is a public health hazard and that its prevention should be a public health goal. Water damage in buildings, such as leaks from roofs, walls, or windows, may increase indoor moisture levels. Excessive dampness may promote microbial proliferation in indoor environments, increase occupants' exposure to microbial agents, and eventually produce adverse health effects in building occupants. Epidemiological studies to demonstrate the causal association between exposure to indoor microbial agents and health effects require reliable exposure assessment tools. In this review, I discuss various sampling and analytical methods to assess human exposure to biological agents in indoor environments, their strengths and weaknesses, and recent trends in research and practice in the USA.

A Comparison of Deep Learning Models for IQ Fingerprint Map Based Indoor Positioning in Ship Environments

  • Yootae Shin;Qianfeng Lin;Jooyoung Son
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1122-1140
    • /
    • 2024
  • The importance of indoor positioning has grown in numerous application areas such as emergency response, logistics, and industrial automation. In ships, indoor positioning is also needed to provide services to passengers on board. Due to the complex structure and dynamic nature of ship environments, conventional positioning techniques have limitations in providing accurate positions. Compared to other indoor positioning technologies, Bluetooth 5.1-based indoor positioning technology is highly suitable for ship environments. Bluetooth 5.1 attains centimeter-level positioning accuracy by collecting In-phase and Quadrature (IQ) samples from wireless signals. However, distorted IQ samples can lead to significant errors in the final estimated position. Therefore, we propose an indoor positioning method for ships that utilizes a Deep Neural Network (DNN) combined with IQ fingerprint maps to overcome the challenges associated with accurate location detection within the ship. The results indicate that the accuracy of our proposed method can reach up to 97.76%.

Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China

  • Chen, Xi;Li, Angui
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_1$ above radiators.

Location-aware visualization of VRML models in indoor location tracking system

  • Yang, Chi-Shian;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.220-228
    • /
    • 2007
  • For many applications particularly in navigation system, a three-dimensional representation improves the usability of information. This paper introduces 3D Graphical User Interface (GUI) of indoor location tracking system, 3D Navigation View. The application provides users a 3D visualization of the indoor environments they are exploring, synchronized with the physical world through spatial information obtained from indoor location tracking system. It adopts widely used Virtual Reality Modeling Language (VRML) to construct, represent, distribute and render 3D world of indoor environments over Internet. Java, an all-purpose programming language is integrated to comprehend spatial information received from indoor location tracking system. Both are connected through an interface called External Authoring Interface (EAI) provided by VRML. Via EAI, Java is given the authority to access and manipulate the 3D objects inside the 3D world that facilitates the indication of user's position and viewpoint in the constructed virtual indoor environments periodically.

Management Policy and Control Technology for Indoor Air Quality in Korea (국내 실내공기질 관리정책의 변천 및 제어기술의 현황)

  • Bae, Gwi-Nam;Ji, Jun-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.378-389
    • /
    • 2013
  • In Korea, studies on the indoor air quality have been conducted since mid of 1980s. The turning point occurred in 2003 by establishing the act of the indoor air quality management for public facilities. According to the law, the basic plan for indoor air quality management is prepared by government every five years, affecting greatly governmental policy and related academia and industries. Indoor air quality survey was mostly carried out among indoor air quality researches. After then, assessment of health effect and air cleaning technology were studied. Although various control technologies for particle, bioaerosol, odor, and hazardous chemicals have been applied to indoor environments, breakthrough technologies are needed to solve real problems facing at the applied environments. In the future, issue of indoor air quality is more interested and both management policy and control technology are key factors in order to realize comfort and healthy indoor environments.

Indoor Radon Concentrations in the Seoul Area (서울시 일부 지역에서의 실내 라돈 농도에 관한조사)

  • 김윤신
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 1989
  • Indoor radon concentrations, measured in 34 houses and various types of underground environments in the Seoul area during February 1988 - January 1989, varied from 0.9 - 9.9 pCi/l. Radon concentrations in basements of the selected homes were about 1.5 times higher than those levels measured in the first floor. The radon level of the first floor in the energy efficient homes are signficantly higher than the conventional homes. Indoor radon levels in the underground pass were higher than any other types of underground environments. Variations among underground environments were much less than for homes, probably because there was less variability in ventilation.

  • PDF

A study of a thermal energy equipment for controlling airborne microorganisms in indoor laboratory environments (열에너지 활용 부유미생물 제어장치 설계 및 실험실 실내공기를 대상으로 한 성능측정에 관한 연구)

  • Kim, Hyun Geon;Hwang, Gi Byung;Lee, Jun Hyun;Lee, Byung Uk
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Airborne microorganisms, termed bioaerosols, are etiological agents of many respiratory and skin diseases. There are high demands of controlling the concentration of bioaerosols, specifically in indoor environments. Here, a new system for controlling indoor bioaerosols is designed and evaluated. An idea of a short time exposure to a thermal energy is used in the design of the equipment. The system was tested in laboratory environments. The experimental results show that the new system can reduce the concentration of viable bioaerosols of indoor laboratory environments.

  • PDF

Comparison of Correlation between Total Airborne Bacteria and Particulate Matter in University Spaces (일부 학교 내 총부유세균 및 미세먼지의 상관성 비교)

  • Hyekyung Seo;Harim An
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • Objectives: The aim of this study is to assess indoor air quality within and around buildings and evaluate the health risks associated with exposure to indoor air pollution. The study compares IAQ standards established by the World Health Organization with those set by South Korea's Ministry of Environment and Ministry of Education. Methods: The study utilized an Anderson Sampler and DustTrakTM II to collect samples of total airborne bacteria and PM in indoor and outdoor environments. Collected samples were analyzed using biological and biochemical methods. Statistical analysis was conducted using SPSS to examine the correlation between airborne bacteria and PM. Results: The study revealed that the concentration of total airborne bacteria in indoor air generally remained below the Ministry of Environment's standard of 800 CFU/m3, although it surpassed this threshold in certain instances. PM concentrations did not exceed the standards. Indoor fine dust concentration was higher when there were people (P<0.05). There was no difference in total floating bacterial concentrations between indoor and outdoor environments (P=0.184). Finally, there was a correlation between fine dust and airborne bacteria concentrations. Conclusion: The study evaluated the concentrations of total airborne bacteria and PM in indoor air, emphasizing the importance of managing IAQ. Further research in various environments is essential to ensure a healthy indoor environment. The findings underscore the need for ongoing research and management to enhance IAQ and create safer and healthier living environments.

Characteristics of Heavy Metal Concentrations and Indoor Atmospheric Environments in Busan Metropolitan Area, Korea

  • Park, Jong-Kil;Kim, Yoo-Kuen;Lee, Hwa-Woon;Jang, Nan-Sim;Park, Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.801-810
    • /
    • 2002
  • The current paper describes the indoor/outdoor air quality in school environments through analyses of the heavy metal concentrations using Inductive Coupled Plasma(ICP). School environments in a heavy traffic area, two industrial areas, quasi-industrial area, and residential area were evaluated. The results were as follows: (1) The locations with the highest indoor and outdoor concentrations of heavy metals were the industrial areas followed by the heavy traffic area, residential area, and quasi-industrial area in a descending order of magnitude. Plus, the indoor heavy metal concentrations were higher then the outdoor ones. (2) The main heavy metal components were Zn, Al and Ca. Higher concentration levels were found indoors than outdoors. The heavy metal concentrations were also higher in the classrooms than in the corridor or outdoors. (3) The total heavy metal concentrations in the studied areas were highly dependent on the weather elements. including the relative humidity, mixing ratio, and wet-bulb depression. Accordingly, special ventilation systems are recommended to reduce air pollution in school environments.