• 제목/요약/키워드: indoor air pollutant

검색결과 125건 처리시간 0.023초

실내공기질 공정시험방법과 기준의 동시 개정에 따른 접착제 제품의 TVOC 관리수준 평가 (The TVOC management level evaluation of adhesive product following to simultaneous revision of indoor air quality testing methods and standards)

  • 유지호;박준만;김만구
    • 분석과학
    • /
    • 제23권3호
    • /
    • pp.255-260
    • /
    • 2010
  • 환경부에서는 오염물질 다량 방출 건축자재의 효율적인 관리를 위해 "다중이용시설 등의 실내 공기질 관리법" 중 접착제의 시험방법과 방출관리기준을 동시에 개정하였다. 따라서 기존 관리수준과 개정 관리수준의 직접적인 비교가 불가능하다. 이 연구에서는 접착제의 개정된 시험방법의 각 요소들이 오염물질 방출강도에 미치는 영향들을 기존 시험방법과 비교하여 검토하였다. 이를 통하여 개정된 오염물질 방출관리기준을 평가하였다. 그 결과 접착제는 시험기간의 변경으로 인해 방출강도가 약 2.5배 약화되었고 건조시간의 변경에 따른 방출강도의 차이는 거의 없는 것으로 나타났다. 시험방법의 변경된 내용을 적용한 TVOC 방출 관리기준은 기존 방출 관리기준에 비해 약 2.1배 강화된 것으로 나타났다.

서울 지하철 객차 내 PM10과 CO2의 농도 변화 (PM10 and CO2 Concentrations in the Seoul Subway Carriage)

  • 손홍지;류경남;임종권;장경조;이기영
    • 한국환경보건학회지
    • /
    • 제35권6호
    • /
    • pp.454-460
    • /
    • 2009
  • The subway is the major public transportation system in Seoul with 2.2 million people using it everyday. Indoor air pollution in the subway can be a significant part of population exposure because of the number of people using the subway, time spent in transit and potentially high exposure for certain pollutants. The Korea Ministry of Environment has established the level 2 of recommended standards of $PM_{10}$ and $CO_2$ in subway trains. The aims of this study were to determine the airborne levels of $PM_{10}$, $CO_2$ and any correlation between pollutant levels and number of passenger in a subway train. The airborne $PM_{10}$ and $CO_2$ were measured on the inside of trains on line #4 for 4 different days from October to November in 2008. Average $PM_{10}$ and $CO_2$ levels were $113{\pm}25{\mu}g/m^3$ and $1402{\pm}442$ ppm, respectively. These levels did not exceed the level 2 of recommended standards of $250{\mu}g/m^3$ for $PM_{10}$ and 3500 ppm for $CO_2$. $PM_{10}$ level was not correlated with the number of passengers, while $CO_2$ levels were positively correlated with the number of passengers. The findings suggested that $PM_{10}$ in subway trains may have sources other than those directly associated with the number of passengers.

Inactivation influences on Escherichia coli DS5α by irradiation with 405 nm violet-light

  • Young-Sun Kim;Mun-Jin Choi;Dae-Young Lee;Sang-Ook Kang;Geung-Joo Lee
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.417-425
    • /
    • 2023
  • Because an irradiation of 405 nm violet light could have a strong energy, it was used to be sterilized against various microbes in the indoor air condition or fresh food. Escherichia coli is a representative bio-pollutant in the indoor air-borne bacteria, and a hygienic microbe in the horticultural food. This study evaluated the inactivation influences on E. coli DS5α after exposure to 405 nm violet-light (VL) by investigating irradiating time, and the vertical and horizonal distance from light source. The illumination of 405 nm VL was inversely proportional to the distance from the VL source. E. coli DS5α on nutrient agar (NA) was inactivated approximately 50% more than the control when irradiated at 65 cm from 405 nm VL for 3 hours. When compared to the control, E. coli DS5α was inactivated approximately 50% within 70 cm from 405 nm VL for 3 hours. As it was irradiated for 3 hours 70 cm away from 405 nm VL, the horizonal distance from the point was negatively correlated to the inactivation of E. coli DS5α. These results indicated that the inactivation of E. coli DS5α grown on NA medium needs to be irradiated with 405 nm within 70 cm from the light source for 3 hours.

교통환기력에 의한 터널내 환기량 추정에 관한 연구 (Estimation of Ventilation Volume by Traffic Ventilation Force in Tunnel)

  • 김종호;이상칠;도연지;김신도
    • 한국대기환경학회지
    • /
    • 제11권3호
    • /
    • pp.273-278
    • /
    • 1995
  • This study is to estimate the ventilation volume by the traffic that originated from driving automobiles for two tunnels (Kugi tunnel and Kumhwa tunnel) that adopted natural ventilation system among tunnels of Seoul, and on the basis of which, we estimated the ventilation velume at various conditions. With the result of the estimation, we will present the basic method that can be operated with the optimum condition for the ventilation system. Estimating the predicted ventilation volume in the tennel by the pollutant concentration, we used traffic volume and CO emission data by the automobile speed and CO concentration in the tunnel. And, when we estimated the traffic ventilation volume by natural and traffic ventilation force, we used traffic volume, automobile speed, tunnel area, automobile area data and so on. As the result of simple regression between predicted ventilation volume and traffic ventilation volume, we attained the regression coefficient 0.88, and achieved the relation form that predicted ventilation volume equal 0.12x traffic ventilation volume-92, 000. Using this equation, we estimated the ventilation volume to satisfy the enviromnental standards of several space, and calculated the required volume for mechanical ventilation. Incase of Kumhwa Tunnel, there is a need of mechanical ventilation all day long to satisfy air quality standard 9 ppm for 8 hours average and 10 ppm for the indoor air quality standard of public facilities.

  • PDF

석고보드의 첨가제에 따른 오염물질 흡착 및 축열 성능에 대한 고찰 (Review on the heat storage performance and air pollutant adsorption properties of gypsum board according to the additives)

  • 서현정;정수광;임재한;김수민
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.97-106
    • /
    • 2015
  • Gypsum board is easy to manufacture of a variety of forms and has stable mechanical properties and thermal properties. And gypsum boards are widely used to the walls and ceiling of the building as the interior building materials. The studies about technology of applying the various features in the gypsum board with additives are being actively investigated. Development methods for enhancing performance of the gypsum board using additives are largely divided into two categories. The first case is functional gypsum board that is to improve the moisture absorption and moisture-proof properties. Also studies of adsorption and decomposition of indoor air pollutants of the gypsum board using porous materials as an additive are being actively investigated. Another case is applying thermal storage materials which gives the heat storage performance to gypsum board. In this paper, we would like to introduce the various cases of gypsum board applied various additives.

실내 공기질 공정시험방법과 기준의 동시 개정에 따른 실란트 제품의 TVOC 관리수준 평가 (Evaluation of TVOC regulation level of sealant products in accordance with simultaneous revision of testing method and regulation value in the law of indoor air quality management)

  • 유지호;박준만;김만구
    • 분석과학
    • /
    • 제23권2호
    • /
    • pp.138-146
    • /
    • 2010
  • 환경부에서는 오염물질 다량 방출 건축자재의 효율적인 관리를 위해 다중이용시설 등의 실내 공기질 관리법의 시행 규칙 일부를 개정하였다. 특히 액상건축 자재인 실란트의 경우 시험방법과 초과기준이 함께 개정되어 기존 관리 수준과 개정 관리 수준의 직접적인 비교가 불가능하다. 따라서 이 연구에서는 실란트의 개정 시험방법의 각 요소들이 오염물질 방출강도에 미치는 영향과 타당성을 기존 시험방법에 대비하여 검토하였다. 이를 통하여 개정된 오염물질 방출 관리기준을 평가하였다. 특히 실란트는 제품마다 완전경화에 소요되는 시간의 편차가 커서 시험기간 내에 완전히 경화되지 않는 제품들도 다수 있는 것으로 나타났다. 그래서 경화시간이 빠른 제품들만 대상으로 개정된 시험방법을 적용하여 실험하였다. 그 결과 개정된 실란트의 관리기준은 기존의 관리기준에 비해 2.5 배 이상 약화된 것으로 나타났다. 개정된 실란트의 시험방법을 모든 실란트 제품에 적용하기 위해서는 시험기간을 연장하거나 실란트 시험편을 빨리 경화시킬 수 있는 시험방법으로 개선이 필요하다.

가스상 대기오염물질에 의한 종이 기록물의 가속열화 특성 연구 (Studies on the Accelerated Aging Characteristics of Paper Records by Gaseous Air Pollutants)

  • 정소윤;전수연;백소라;정현석;이진희;김형진
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.151-159
    • /
    • 2015
  • Paper records were generally degraded by some factors from atmospheric environments, like temperature, relative humidity or air pollutants. In this study, the degradation behavior of paper records by single or mixed gases of $NO_2$, $SO_2$, HCHO and TVOC was evaluated. The mechanical, optical and chemical properties of 4 kinds of paper (acid and neutral-based printing paper, traditional Hanji, and filter paper) were directly and indirectly affected by gaseous harmful materials. The brightness and $L^*$ value in all papers were slightly increased by accelerated aging under gaseous HCHO and TVOCs, but highly decreased by conditions under gases $NO_2$ and $SO_2$. The optical properties of paper records were most vulnerable in acid-based paper and high stable in filter paper and traditional Hanji by air pollutant degradation. The aging treatments under mixed gas pollutants including $NO_2$ resulted in decrease of physical, mechanical and optical properties of paper, so it was supposed that the concentration of $NO_2$ gas would be strictly controlled for optimum indoor air quality management in domestic storage centers for paper records.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구 (Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility)

  • 김태한;최부헌
    • 한국조경학회지
    • /
    • 제48권5호
    • /
    • pp.80-88
    • /
    • 2020
  • 2019년 3월 미세먼지 비상저감조치가 일주일 동안 발령되면서, 미세먼지로 인한 국민의 불안감은 점차 가중되고 있다. 본 연구는 공기정화식물이 적용된 바이오필터의 다중이용시설 내 적용성 평가를 위해 입자상 오염원의 실내 연속방출환경을 조성하여 오염원 저감효과에 대한 측정방법을 제안하고, 시스템의 실내공기질 개선 여부를 확인할 수 있는 기초연구를 진행하였다. 강의실을 대상으로 춘절기에 모니터링 1시간 전 모기향을 오염원으로 배경농도를 조성한 후, 스케줄에 따라 2시간 관수, 1시간 송풍하여 미세먼지의 저감능을 확인하였으며, 바이오필터 2m 전방에 PM10, PM2.5 및 온습도 센서를 설치하고, 3개 송풍구 중 중앙에 풍속 프로브를 설치하여 시계열 모니터링을 수행하였다. 바이오필터에 구비된 총 3개소의 송풍구 평균 면풍속은 0.38±0.16 m/s로 댐퍼 면적이 제외된 송풍구별 면적 0.29m×0.65m을 적용한 총 공조풍량이 776.89±320.16㎥/h로 산출되었다. 시스템 가동으로 평균온도 21.5~22.3℃, 평균상대습도 63.79~73.6%를 유지하여, 선행연구의 다양한 조건별 온습도 범위에 부합하는 것으로 판단된다. 시스템 공조부 구동을 통해 급격하게 상대습도를 상승시키는 효과를 효율적으로 운용할 경우, 계절에 따른 실내 미세먼지 저감과 적정한 상대습도 확보도 가능할 것으로 판단된다. 미세먼지 농도는 바이오필터 시스템 가동 전의 모든 주기에서 상승 현상이 동일하게 집계되었으며, 시스템 가동 후 1주기 송풍구간(B-1, β=-3.83, β=-2.45)에서 미세먼지(PM10)는 최대 28.8% 수준인 560.3㎍/㎥, 초미세 먼지(PM2.5)는 최대 28.0% 수준인 350.0㎍/㎥까지 저감되었다. 이후 미세먼지(PM10, PM2.5)의 농도는 2주기 송풍구간 감소(B-2, β=-5.50, β=-3.30)로 각각 최대 32.6% 수준인 647.0㎍/㎥, 32.4% 수준인 401.3㎍/㎥까지 저감되었고, 3주기 송풍구간감소(B-3, β=5.48, β=-3.51)로 최대 30.8% 수준인 732.7㎍/㎥, 31.0% 수준인 459.3㎍/㎥까지 저감된 것으로 확인되었다. 본 연구는 식생 바이오필터의 다중이용시설 내 설치와 유관한 관련 표준 및 규정을 참조하여, 객관적인 성능평가환경의 구축 방안을 제시할 수 있었다. 이를 통해 일반 강의실 환경 내에 보다 객관화된 모니터링 인프라를 조성하여, 상대적으로 신뢰성 있는 데이터 확보가 가능했던 것으로 판단된다.