• Title/Summary/Keyword: indoor aerosol particle

Search Result 48, Processing Time 0.023 seconds

Size distributions of suspended fine particles during cleaning in an office (사무실의 실내 청소 과정에서 부유하는 미세먼지의 크기분포)

  • Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.25-33
    • /
    • 2018
  • In this study, the concentration of fine indoor dust and the size distribution of fine indoor dust were analyzed by measuring the dust generated during the cleaning process of an indoor office. We measured $PM_{10}$, $PM_{2.5}$, and $PM_{1.0}$ and analyzed the size distributions of dust larger than $0.3{\mu}m$ in diameter during cleaning. The results showed that the concentration of $PM_{10}$ increased rapidly during cleaning, however $PM_{1.0}$ did not increase. Before cleaning with a broom, the fine dust concentration was about $50{\mu}g/m^3$, but increased to about $400{\mu}g/m^3$ as cleaning progressed. In the case of indoor cleaning with a vacuum cleaner, the concentration of $PM_{10}$ increased during the cleaning process and the increase of $PM_{2.5}$ was relatively small. $PM_{1.0}$ did not increase as in the case of cleaning the broom.

Gas and particle removal characteristics of a novel electrostatic precipitation type air cleaner using an activated carbon filter as an electrode (활성탄 섬유 필터를 전극으로 활용한 정전 방식의 공기정화장치의 가스 및 입자 제거 특성 분석)

  • Lim, Gi-Taek;Kim, Yong-Jin;Han, Bangwoo;Woo, Chang Gyu;Shin, Weon Gyu;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • We have developed an electrostatic precipitation (ESP) type air cleaner for indoor air quality and investigated its performances regarding CADR (Clean air delivery rate), single-pass efficiency and gas removal efficiency. The ESP air cleaner used an ACF (Activated carbon fiber) filter for gas removal and the ACF as a high voltage electrode for particle removal. The ESP air cleaner was tested in a chamber with the volume of $1m^3$ regarding CADR and gas removal efficiency. The applied CADR area of the ESP was $1.8m^2$. Gas removal efficiency was tested with 3 gases (Acetaldehyde, Acetic acid, Ammonia). As the results of the gas removal efficiency, the ESP air cleaner shows the removal efficiencies of 90, 98 and 85% for acetaldehyde, acetic acid and ammonia, respectively.

Characteristics of Formation and Growth of Aerosol Particles in an Indoor Smog Chamber (스모그 챔버 실험에 의한 에어로졸의 생성과 성장 현상의 관찰)

  • 김민철;배귀남;이승복;진현철;문길주;박주연;김용표
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.43-44
    • /
    • 2003
  • 스모그 챔버는 대기화학 반응을 물리적 변수를 제어할 수 있는 공간 내에서 재현하여 스모그 현상을 체계적으로 규명하기 위해 가장 많이 사용되는 방법이다(Dodge, 2000). 대기화학 반응을 통해 생성된 입자상 물질(secondary particles) 또는 초미세 입자(ultrafine particle, 〈0.1 $\mu\textrm{m}$)는 연속된 물리화학 반응을 통해 accumulation mode(0.1~l.0 $\mu\textrm{m}$) 입자로 성장한다. 특히, 대도시의 시정(visibility)은 accumulation mode 입자의 산란(scattering)과 흡수(adsorption)가 주요한 원인이기 때문에 이러한 물질의 생성에 영향을 주는 가스상 물질의 전화(gas-to-particle conversion) 반응과 초미세 입자의 성장 현상을 규명하는 것은 매우 중요하다. (중략)

  • PDF

Development of an ionic wind dust collector towards coronavirus reduction in subway stations (지하철 역사 내 코로나 바이러스 저감을 위한 이온풍 집진기 개발)

  • Shin, Dongho;Kim, Younghun;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Since 2019, the corona virus has been continuously affect human life. In particular, in the indoor space where people live, infection by airborne transmission of viruses is a problem. Among them, the spread in the subway, which is the main mode of transport for humans, can be serious. To solve this problem, our research team developed an ionic wind collector to collect and remove corona virus using an ionic wind collector and ozone. In order to apply the ionic wind collector to the subway, it must operate in two modes. Because large amounts of ozone are harmful to the human body. There is a mode that collects bio-aerosol from the air using ionic wind and a mode that inactivates viruses floating in the air by generating a large amount of ozone. As the applied voltage increased, the cleaning ability of the ionic wind collector increased, and the farther the distance between the discharge electrode and the ground plate, the higher the cleaning ability even at low current. In addition, clean air delivery rate (CADR) of an ionic wind collector was up to 5.5 m3/min. As a result of measuring the amount of ozone generated, it was confirmed that 50 ppb to 250 ppb was generated, and it was confirmed that ozone generation was controllable in the ionic wind dust collector.

Characteristics of PM10, PM2.5 and CO2 Concentration in Public Transportations and Development of Control Technology (대중교통수단에서 PM10, PM2.5 및 CO2의 농도 현황과 저감기술 개발에 관한 연구)

  • Park, Duck Shin;Kwon, Soon Bark;Cho, Young Min;Jang, Seong Ki;Jeon, Jae Sik;Park, Eun Young
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • This study examined the concentration level of the major air pollutants in public transportation. The study was conducted between February 2009 and March 2008 at Suwon-Yeosu line in Korea. $PM_{10}$ concentration level was $100{\mu}g/m^3$ on average. The $PM_{2.5}$ to PM10 ratio in transport is 0.37, which was lower than the results published by other researches. The result also demonstrated that outdoor $PM_{10}$ concentration was about 56~60% level compared to that of the cabin. $CO_2$ concentration level in the cabin was 1,359ppm, which does not exceed 2,000ppm, which is the guideline concentration level according to the Ministry of Environment. $CO_2$ concentration level in the cabin was $CO_2=23.4{\times}N+460.2$, and about 23.4ppm in $CO_2$ concentration level increased every time one passenger was added on. The experiment conducted on the train demonstrated that the average $PM_{10}$ concentration level was $100{\mu}g/m^3$ in case of the reference cabin while average $PM_{10}$ concentration level of the modified vehicle was $68{\mu}g/m^3$. Likewise, effect of the particle reduction device for the reduction of $PM_{10}$ concentration level was approximately 21%. Meanwhile there was almost no difference in the concentration level between reference and modified cabin in case of $PM_{2.5}$. Using zeolite as an adsorbent was made to reduce the $CO_2$ concentration level in the cabin. Number of passengers was factored in, to calculate the effect of the adsorption device, which demonstrated that about 36% of $CO_2$ concentration level was reduced in the modified cabin effect of the $CO_2$ reduction device. This research analyzed the current status concerning the quality of air in the public transportation and technologies were developed that reduces major air pollutants.

Performance Evaluation of Fine-Dust Blocking Effect of Functional Clothing (미세먼지 차단 기능성 의류 제품의 성능 평가에 관한 연구)

  • Seok-Ju, Hwang;Chang-Hoon, Lee;Jin-Kyung, Kwon;Young-Sil, Kim;Eun-Jin, Choi;Da-Jin, Kim;Min, Kim;Se-Jin, Yook
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • As many studies on the harmfulness of fine dust have been reported, awareness of its seriousness is spreading. Recently, interest in indoor air quality as well as air pollution is increasing, and research on measures to block fine dust flowing into the room from the outside is being conducted. The clothing company is launching functional clothing to prevent fine dust attached to clothing from entering the room through outdoor activities. However, it is difficult to confirm whether there is actually fine-dust blocking performance, and there is no evaluation standard. In this study, the contamination rate caused by fine dust was quantitatively compared through image processing after contamination of the outer fabric for 4 types of commercially available functional clothing with fine-dust blocking effect. The difference in particle contamination according to the material of the outer fabric was analyzed by comparing the surface resistance, and it was found that the higher the surface resistance of the outer fabric material, the more fine dust was attached. The analysis method of this study is expected to be able to quantitatively compare and evaluate the fine-dust blocking performance of functional clothing.

Characteristics of Indoor Particulate Matter Concentrations by Size at an Apartment House During Dusty-Day (황사 발생시 아파트 실내에서 미세먼지 크기별 농도 특성)

  • Joo, Sang-Woo;Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • It is recommended for the public to stay at home and to close the doors and windows when a high-particulate-matter environment such as a yellow sand event occurs outside. However, there are lack of empirical studies describing how much outdoor PM infiltrates into a closed house and how much indoor PM an inhabitant is exposed to during the period. In this study, the $PM_{10}$ and $PM_{2.5}$ were measured at the kitchen in an apartment house by an optical particle counter for 3 days including a yellow sand event. The outdoor PMs and the outdoor wind speeds were referred from surrounding weather stations. We analyzed the penetration of $PM_{10-2.5}$ and $PM_{2.5}$ at the test house against the outdoor wind speed supposed corresponding to the change of air exchange rate. In addition, the effect of an indoor activity on change in the indoor PM was investigated. In result, the indoor $PM_{10-2.5}$ was very low even a yellow sand event occurred outside; rather, a contribution of indoor activities to increase in $PM_{10-2.5}$ was higher. In contrast, the indoor $PM_{2.5}$ fluctuated following the outdoor $PM_{2.5}$ trend at high wind speeds or remained almost constant at low wind speed.

Wall Contamination of Teflon Bags Used as a Photochemical Reaction Chamber of Ambient Air (실제 대기의 광화학 반응 챔버로 사용되는 테플론 백의 오염도 평가)

  • Lee, Seung-Bok;Bae, Gwi-Nam;Lee, Young-Mee;Moon, Kil-Choo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.149-161
    • /
    • 2013
  • Experiments on photochemical reactions of purified air alone in an indoor smog chamber were carried out after flushing Teflon bags with purified air for many hours in order to check the level of contamination on the chamber wall. Ozone concentrations were linearly increased from <4 ppb up to about 8 ppb with irradiation time for four hours. Outgassing of NOx from the chamber wall was found to be less than 1 ppb. New ultrafine particles were formed and grown up to about 70 nm during the photochemical reactions, and then total number and mass concentrations of particles were increased from <10 particles/$cm^3$ up to about 4,000 particles/$cm^3$ and $1.3{\mu}g/m^3$, respectively. The wall conditions of these Teflon bags flushed with purified air might not severly affect the chamber experimental results for photochemical reactions of polluted urban ambient air. The difference of gaseous species between two chambers was 2.4 ppb of ozone at most, indicating that the wall cleaning performance of two chambers was nearly similar.

Numerical and experimental study on the pressure dorp of axial-flow cyclone in the air handling unit (공기조화기 장착용 축상유입식 싸이클론의 압력손실에 대한 수치해석 및 실험적 연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Youngmin;Kim, Se-Young;Kim, Myeoung-Joon;Kim, Hojoong;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator are used in the air handling unit (AHU) of subway stations. However, those systems are prone to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts might malfunction due to the high load of particulates unless the filter medium is periodically replaced. In this study, the use of axial-flow cyclone was proposed for particulate filter unit in the AHU for its low operation and maintenance cost. Novel shape of axial-flow cyclone was designed by using computational fluid dynamics (CFD). The shape of vortex vane was optimized in terms of pressure drop and tangential velocity. In addition, CFD analysis was validated experimentally through the pressure drop measurement of mock-up model. We found that pressure drop and tangential velocity of fluid through the axia-flow cyclone was significantly affected by the rotating degree of vortex vane and the numerical prediction of pressure drop agreed well with experimental measurement.

  • PDF

The Correlation between Radon (Rn222) and Particulate Matters (PM10, PM2.5, PM1.0) in Subway Tunnel in Seoul.

  • Versoza, Michael;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Radon ($Rn^{222}$) is a radioactive gas and is found at high concentrations underground. Investigations were done in many years specifically on public transportations such as in the subway stations, concourses and platforms for these are located underground areas. This study correlates the $Rn^{222}$ concentrations with the Particulate Matter (PM) concentration for the gas could be attached or trapped inside these particles. It was done on the opening subway tunnel of Miasageori Station going to Mia Station (Line 4) last August 2016. Based on the result, the $Rn^{222}$ were more influenced on the mass ratio (%) of PM present in the air instead of its mass concentration (${\mu}g/m^3$). As the $PM_{10}$ mass ratio increases ($42.32{\pm}1.03%$) during morning rush-hours, radon starts to increase up to $0.97{\pm}0.03pCi/L$. But during the afternoon $Rn^{222}$ concentrations decreased while the composition were stable at $22.96{\pm}3.0%$, $39.04{\pm}0.6%$ and $38.01{\pm}0.3%$ in $PM_1$, $PM_{2.5}$ and $PM_{10}$ respectively. It was then assumed that it could be the composition of the morning hours of the station were influencing the concentration of the radon.