DOI QR코드

DOI QR Code

The Correlation between Radon (Rn222) and Particulate Matters (PM10, PM2.5, PM1.0) in Subway Tunnel in Seoul.

  • Versoza, Michael (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Park, Duckshin (Transportation Environmental Research Team, Korea Railroad Research Institute)
  • Received : 2017.03.27
  • Accepted : 2017.06.13
  • Published : 2017.06.30

Abstract

Radon ($Rn^{222}$) is a radioactive gas and is found at high concentrations underground. Investigations were done in many years specifically on public transportations such as in the subway stations, concourses and platforms for these are located underground areas. This study correlates the $Rn^{222}$ concentrations with the Particulate Matter (PM) concentration for the gas could be attached or trapped inside these particles. It was done on the opening subway tunnel of Miasageori Station going to Mia Station (Line 4) last August 2016. Based on the result, the $Rn^{222}$ were more influenced on the mass ratio (%) of PM present in the air instead of its mass concentration (${\mu}g/m^3$). As the $PM_{10}$ mass ratio increases ($42.32{\pm}1.03%$) during morning rush-hours, radon starts to increase up to $0.97{\pm}0.03pCi/L$. But during the afternoon $Rn^{222}$ concentrations decreased while the composition were stable at $22.96{\pm}3.0%$, $39.04{\pm}0.6%$ and $38.01{\pm}0.3%$ in $PM_1$, $PM_{2.5}$ and $PM_{10}$ respectively. It was then assumed that it could be the composition of the morning hours of the station were influencing the concentration of the radon.

Keywords

References

  1. Adams H. S., Nieuwenhuijsen, M. J., Colvile, R. N., McMullen, M. A. S., Khandelwal, P., 2001, Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. The Sci. Total Environ. 279, 29 - 44. https://doi.org/10.1016/S0048-9697(01)00723-9
  2. BEIR VI, 1999. Biological Effects of Ionizing radiation (BEIR) VI Report: The health effects of exposure to indoor radon. Natl. Acad. Sci. Washington, D. C.
  3. Bezek, M., Gregoric, A., Vaupotic, J., 2013. Radon decay products and 10 - 1100nm aerosol particles in Postojna Cave. Natl. Hazards Eart Syst. Sci. 13, 823 - 831. https://doi.org/10.5194/nhess-13-823-2013
  4. Crawford, J., Cohen, D., Zahorowski, W., Chambers, Scott, Stelcer, E., 2011. A new method to combine IBA of fine aerosols with radon-22 to determine source characteristics. Nucl. Instru. Methods Phys. Res. B. 269, 2041 - 2051. https://doi.org/10.1016/j.nimb.2011.06.007
  5. Darby et al, 2005. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. J. Natl. Cancer Inst. 87, 378 - 384.
  6. Font, L. L., Baixeras, C., Domingo, C., Fernandez, F., 1999. Experimental and theoretical study of radon levels and entry mechanisms in Mediterranean climate house. Radiation Measurements. 31, 277 - 282. https://doi.org/10.1016/S1350-4487(99)00110-9
  7. International Commission on Radiological Protection (1981). Limits for inhalation of radon daughters by workers. ICRP Publication. 32, Permagamon, New York.
  8. Jeon, J. S., Kim, D. C., Lee, J. Y., Hong, D. H., Lee, Y. S., Sin, J. S., 2006. A study on assessment of distribution characteristics of 222Rn Concentration in Seoul Subway Stations. J. Korean Soc. Atmos. Environ. 4, 549 - 551.
  9. Jeon, J. S., Yoon, J. C., Lee, H. C., Eom, S. W., and Chae Y. Z., 2012. A noticeable change in indoor radon levels after platform screen doors installation in Seoul subway station.. J. Korean Soc. Atmos. Environ. 28 (1), 59 - 67. https://doi.org/10.5572/KOSAE.2012.28.1.059
  10. Jeong, W., Lee, Y., Choi, K., Park, D., 2016. Particulate matters level in subway tunnels and cabins. Intl. J. Environ. Monitor. Analysis. 4(3), 89 - 93. https://doi.org/10.11648/j.ijema.20160403.14
  11. Kim, J. B., Kim, S., Lee, G. J., Bae, G. N., Cho, Y., Park, D., Lee, D. H., Kwon, S. B., 2014. Status of PM in Seoul metropolitan subway cabins and effectiveness of subway cabin air purifiers (SCAP). Clean Techn. Environ. Policy. 16, 1193 - 1200. https://doi.org/10.1007/s10098-013-0708-1
  12. Krewski, D., et al, 2005. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology. 16, 137 - 145. https://doi.org/10.1097/01.ede.0000152522.80261.e3
  13. Kwon, S. B., Nambung, H. G., Jeong, W., Park, D., Eom, J. K., 2016 Transient variation of aerosol size distribution in an underground subway station. Environ. Monit. Assess. 188: 362. DOI 10.1007/s10661-016-5373-5
  14. Lee, C. M., Sim, I. S., Cho, Y. S., Park, G. Y., Kim, Y. S., Goung, S. J. N., Joo, Y. K., 2012. Radon concentrations in various environments and effective doses to inhabitants in Korea. Environ. Pollution. 1 (1), 55 - 68.
  15. Lee, C. M., Kim, Y. S., Kim, J. C., Jeon, H. J., 2004. Distribution of radon concentration at subway station in Seoul. Korean Soc. Environ. Health. 30(5) 469 - 480.
  16. Lee, E. S., Lee, T. J., Park, M. B., Park, D., Kim, S. D., and Kim, D. S., 2016. The size-oriented particulate mass ratio and their characteristics on the Seoul Metropolitan Subway lines. Asian J. Atmos. Environ. 10, 217 - 225. https://doi.org/10.5572/ajae.2016.10.4.217
  17. Lubin J. H., et al, 2001. Estimating lung cancer and residential radon in China: pooled results of two studies. Int. J. Cancer. 109, 132 - 137.
  18. Ma, C. J., Lee, K. B., Kim, S. D., Sera, K., 2015. Chemical properties and source profiles of particulate matter collected on an underground subway platform. Asian J. Atmos. Environ. 9-2, 165 - 172. https://doi.org/10.5572/ajae.2015.9.2.165
  19. Moreno, T., et al, 2015. Urban air quality comparison for bus, tram, subway, and pedestrian commutes in Barcelona. Environ. Res. 142, 495 - 510. https://doi.org/10.1016/j.envres.2015.07.022
  20. Park, D., Kwon, S. B., Cho, Y., Park, E., Jeong, W., and Lee, K., 2012. Reduction of particulate matters levels in railway cabins in Korea. Environ Health Sci. 38(1), 51 - 56.
  21. Park, D., Lee, T., Hwang, D., Jung W., Lee, Y., Cho, K., Kim, D., Lee, K., 2014. Identification of sources of PM 10 in a subway tunnel using positive matrix factorization. J. Air and Waste Management Assoc. 64, 1361 - 1368. https://doi.org/10.1080/10962247.2014.950766
  22. Seoul Metropolitan Government, Republic of Korea, 2013. Status of daily travel by transportation. http://stat.seoul.go.kr
  23. Skeppstrom, K., Olofsson, B., 2007. Uranium and Radon in groundwater: An overview of the problem. European Water 17/18, 51 - 62.
  24. Son, Y. S., Jeon, J. S., Lee, H. J., Ryu, I. C., Kim, J. C., 2014. Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains. J Air and waste Management Assoc. 64, 1054 - 1061. https://doi.org/10.1080/10962247.2014.923350
  25. Song, M. H., Chang, B. U., Kim, Y. J., Lee, H. Y., and Heo, D. H., 2010. Radon in underground workplaces; Assessment of the annual effective dose due to inhaled radon for the seoul subway station staffs. J. Radiation Protection. 35(4), 163 - 166.
  26. Whittlestone, S., James, J., Barnes, C., 2003. The relationship between local climate and radon concentrations in the Temple of baal, Jenolan Caves, Australia. Helictite. 38 (2), 39 - 44.
  27. Yoon, S. K., Chang, B. U., Kim, Y. J., Byun, J. I., and Yun, J. Y., 2010. Indoor radon distribution of subway stations in a Korean major city. J. Environ. Radioactivity. 101, 304 - 308. https://doi.org/10.1016/j.jenvrad.2010.01.002
  28. Zoran, M. A., Dida, M. R., Zoran, A. T., Zoran, L. F., Dida, A., 2013. Outdoor 222Radon concentrations monitoring in relation with particulate matter levels and possible health effects. J. RadioanalNucl. Chem. 296, 1179 - 1192.