• Title/Summary/Keyword: indoor 3D model

Search Result 111, Processing Time 0.026 seconds

A Study on the Construction of Indoor Spatial Information using a Terrestrial LiDAR (지상라이다를 이용한 지하철 역사의 3D 실내공간정보 구축방안 연구)

  • Go, Jong Sik;Jeong, In Hun;Shin, Han Sup;Choi, Yun Soo;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.89-101
    • /
    • 2013
  • Recently, importance of indoor space is on the rise, as larger and more complex buildings are taking place due to development of building technology. Accordingly, range of the target area of spatial information service is rapidly expanding from outdoor space to indoor space. Various demands for indoor spatial information are expected to be created in the future through development of high technologies such as IT Mobile and convergence with various area. Thus this research takes a look at available methods for building indoor spatial information and then builds high accuracy three-dimensional indoor spatial information using indoor high accuracy laser survey and 3D vector process technique. The accuracy of built 3D indoor model is evaluated by overlap analysis method refer to a digital map, and the result showed that it could guarantee its positional accuracy within 0.04m on the x-axis, 0.06m on the y-axis. This result could be used as a fundamental data for building indoor spatial data and for integrated use of indoor and outdoor spatial information.

A Study on the Implementation of Indoor Topology Using Image Data (영상 데이터를 활용한 실내 토폴로지 구현에 관한 연구)

  • Kim, Munsu;Kang, Hye-Young;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.329-338
    • /
    • 2016
  • As the need of indoor spatial information has grown, many applications have been developed. Nevertheless, the major representations of indoor spatial information are on the 2D or 3D, recently, the service based on omni-directional image has increased. Current service based on omni-directional image is used just for viewer. To provide various applications which can serve the identifying the attribute of indoor space, query based services and so on, topological data which can define the spatial relationships between spaces is required. For developing diverse applications based on omni-directional image, this study proposes the method to generate IndoorGML data which is the international standard of indoor topological data model. The proposed method is consist of 3 step to generate IndoorGML data; 1) Analysis the core elements to adopt IndoorGML concept to image, 2) Propose the method to identify the element of ‘Space’ which is the core element of IndoorGML concept, 3) Define the connectivity of indoor spaces. The proposed method is implemented at the 6-floor of 21centurybuilding of the University of Seoul to generate IndoorGML data and the demo service is implemented based on the generated data. This study has the significance to propose a method to generate the indoor topological data for the indoor spatial information services based on the IndoorGML.

A 2D / 3D Map Modeling of Indoor Environment (실내환경에서의 2 차원/ 3 차원 Map Modeling 제작기법)

  • Jo, Sang-Woo;Park, Jin-Woo;Kwon, Yong-Moo;Ahn, Sang-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.355-361
    • /
    • 2006
  • In large scale environments like airport, museum, large warehouse and department store, autonomous mobile robots will play an important role in security and surveillance tasks. Robotic security guards will give the surveyed information of large scale environments and communicate with human operator with that kind of data such as if there is an object or not and a window is open. Both for visualization of information and as human machine interface for remote control, a 3D model can give much more useful information than the typical 2D maps used in many robotic applications today. It is easier to understandable and makes user feel like being in a location of robot so that user could interact with robot more naturally in a remote circumstance and see structures such as windows and doors that cannot be seen in a 2D model. In this paper we present our simple and easy to use method to obtain a 3D textured model. For expression of reality, we need to integrate the 3D models and real scenes. Most of other cases of 3D modeling method consist of two data acquisition devices. One for getting a 3D model and another for obtaining realistic textures. In this case, the former device would be 2D laser range-finder and the latter device would be common camera. Our algorithm consists of building a measurement-based 2D metric map which is acquired by laser range-finder, texture acquisition/stitching and texture-mapping to corresponding 3D model. The algorithm is implemented with laser sensor for obtaining 2D/3D metric map and two cameras for gathering texture. Our geometric 3D model consists of planes that model the floor and walls. The geometry of the planes is extracted from the 2D metric map data. Textures for the floor and walls are generated from the images captured by two 1394 cameras which have wide Field of View angle. Image stitching and image cutting process is used to generate textured images for corresponding with a 3D model. The algorithm is applied to 2 cases which are corridor and space that has the four wall like room of building. The generated 3D map model of indoor environment is shown with VRML format and can be viewed in a web browser with a VRML plug-in. The proposed algorithm can be applied to 3D model-based remote surveillance system through WWW.

  • PDF

An Untrained Person's Posture Estimation Scheme by Exploiting a Single 24GHz FMCW Radar and 2D CNN (단일 24GHz FMCW 레이더 및 2D CNN을 이용하여 학습되지 않은 요구조자의 자세 추정 기법)

  • Kyongseok Jang;Junhao Zhou;Chao Sun;Youngok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.897-907
    • /
    • 2023
  • Purpose: In this study, We aim to estimate a untrained person's three postures using a 2D CNN model which is trained with minimal FFT data collected by a 24GHz FMCW radar. Method: In an indoor space, we collected FFT data for three distinct postures (standing, sitting, and lying) from three different individuals. To apply this data to a 2D CNN model, we first converted the collected data into 2D images. These images were then trained using the 2D CNN model to recognize the distinct features of each posture. Following the training, we evaluated the model's accuracy in differentiating the posture features across various individuals. Result: According to the experimental results, the average accuracy of the proposed scheme for the three postures was shown to be a 89.99% and it outperforms the conventional 1D CNN and the SVM schemes. Conclusion: In this study, we aim to estimate any person's three postures using a 2D CNN model and a 24GHz FMCW radar for disastrous situations in indoor. it is shown that the different posture of any persons can be accurately estimated even though his or her data is not used for training the AI model.

Calibration of a Rotating Stereo Line Camera System for Indoor Precise Mapping (실내 정밀 매핑을 위한 회전식 스테레오 라인 카메라 시스템의 캘리브레이션)

  • Oh, Sojung;Shin, Jinsoo;Kang, Jeongin;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.171-182
    • /
    • 2015
  • We propose a camera system to acquire indoor stereo omni-directional images and its calibration method. These images can be utilized for indoor precise mapping and sophisticated imagebased services. The proposed system is configured with a rotating stereo line camera system, providing stereo omni-directional images appropriate to stable stereoscopy and precise derivation of object point coordinates. Based on the projection model, we derive a mathematical model for the system calibration. After performing the system calibration, we can estimate object points with an accuracy of less than ${\pm}16cm$ in indoor space. The proposed system and calibration method will be applied to indoor precise 3D modeling.

Practices on BIM-based indoor spatial information implementation and location-based services (BIM기반 실내공간정보구축 및 위치정보 활용 서비스 동향 고찰)

  • Kim, Min-Cheol;Jang, Mi-Kyoung;Hong, Sung-Moon;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2015
  • Increasing size and complexity of indoor structures have led to much more complication in the spatial cognition and situational awareness. Contrary to outdoor environments, occupants have limited information regarding the indoor space syntax in terms of architectural and semantic information as well as how they interact with their surroundings. The availability of such information could give conveniences to both users and managers in various aspects. In order to visualize the exact location of rooms and utilities in 3D, many studies and projects have utilized BIM models because of its promising value of representing building components. In fact, the application of BIM provides definitive spatial indoor data and creates services for indoor space management and navigation. Therefore, this paper aims to provide an overview of practices on BIM-based indoor spatial information implementation and location-based services. It is expected that enabling of technologies, data-rich content and accessibility of information products will accelerate the growth of the spatially-related markets in various fields.

A 3D Ray-Tracing Propagation Model for Analyses on the Indoor Polarization Diversity Scheme (3차원 광선 추적법을 이용한 실내 환경에서의 편파 다이버시티 성능 분석에 관한 연구)

  • 홍순학;석우찬;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.766-776
    • /
    • 1999
  • In this paper to evaluate the performance of the polarization diversity and the space diversity in the indoor environment, we used 3D Ray-tracing simulation. This model is capable of predicting small scale fading characteristics of the channel for evaluating the performances of both the polarization and the space diversity scheme. The measurement and simulation results show that the polarization diversity and the space diversity are expected to be efficiently used for the indoor environments. Moreover, the results show that the proposed polarization diversity technique using directional dual polarization microstrip array antennas has more diversity gain than the conventional polarization and space diversity using dipole antenna.

  • PDF

3D Reconstruction of an Indoor Scene Using Depth and Color Images (깊이 및 컬러 영상을 이용한 실내환경의 3D 복원)

  • Kim, Se-Hwan;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • In this paper, we propose a novel method for 3D reconstruction of an indoor scene using a multi-view camera. Until now, numerous disparity estimation algorithms have been developed with their own pros and cons. Thus, we may be given various sorts of depth images. In this paper, we deal with the generation of a 3D surface using several 3D point clouds acquired from a generic multi-view camera. Firstly, a 3D point cloud is estimated based on spatio-temporal property of several 3D point clouds. Secondly, the evaluated 3D point clouds, acquired from two viewpoints, are projected onto the same image plane to find correspondences, and registration is conducted through minimizing errors. Finally, a surface is created by fine-tuning 3D coordinates of point clouds, acquired from several viewpoints. The proposed method reduces the computational complexity by searching for corresponding points in 2D image plane, and is carried out effectively even if the precision of 3D point cloud is relatively low by exploiting the correlation with the neighborhood. Furthermore, it is possible to reconstruct an indoor environment by depth and color images on several position by using the multi-view camera. The reconstructed model can be adopted for interaction with as well as navigation in a virtual environment, and Mediated Reality (MR) applications.

  • PDF

Automation of Information Extraction from IFC-BIM for Indoor Air Quality Certification (IFC-BIM을 활용한 실내공기질 인증 요구정보 생성 자동화)

  • Hong, Simheee;Yeo, Changjae;Yu, Jungho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.63-73
    • /
    • 2017
  • In contemporary society, it is increasingly common to spend more time indoors. As such, there is a continually growing desire to build comfortable and safe indoor environments. Along with this trend, however, there are some serious indoor-environment challenges, such as the quality of indoor air and Sick House Syndrome. To address these concerns the government implements various systems to supervise and manage indoor environments. For example, green building certification is now compulsory for public buildings. There are three categories of green building certification related to indoor air in Korea: Health-Friendly Housing Construction Standards, Green Standard for Energy & Environmental Design(G-SEED), and Indoor Air Certification. The first two types of certification, Health-Friendly Housing Construction Standards and G-SEED, evaluate data in a drawing plan. In comparison, the Indoor Air Certification evaluates measured data. The certification using data from a drawing requires a considerable amount of time compared to other work. A 2D tool needs to be employed to measure the area manually. Thus, this study proposes an automatic assessment process using a Building Information Modeling(BIM) model based on 3D data. This process, using open source Industry Foundation Classes(IFC), exports data for the certification system, and extracts the data to create an Excel sheet for the certification. This is expected to improve the work process and reduce the workload associated with evaluating indoor air conditions.

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF