• Title/Summary/Keyword: indium tin oxide thin film (ITO)

Search Result 230, Processing Time 0.028 seconds

An ITO/Au/ITO Thin Film Gas Sensor for Methanol Detection at Room Temperature

  • Jeong, Cheol-Woo;Shin, Chang-Ho;Kim, Dae-Il;Chae, Joo-Hyun;Kim, Yu-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.77-80
    • /
    • 2010
  • Indium tin oxide (ITO) films with a 5 nm thick Au interlayer were prepared on glass substrates. The effects of the Au interlayer on the gas sensitivity for detecting methanol vapors were investigated at room temperature. The conductivity of the film sensor increased upon exposure to methanol vapor and the sensitivity also increased proportionally with the methanol vapor concentration. In terms of the sensitivity measurements, the ITO film sensor with an Au interlayer shows a higher sensitivity than that of the conventional ITO film sensor. This approach is promising in gaining improvement in the performance of ITO gas sensors used for the detection of methanol vapor at room temperature.

Electrical and Optical of Properties ITO Thin Film by CMP Process Parameter (CMP 공정변수에 따른 ITO박막의 전기적.광학적 특성)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.151-153
    • /
    • 2005
  • Indium tin oxide (ITO) thin film was polished by chemical mechanical polishing (CMP) by the change of process parameters for the improvement of electrical and optical properties of ITO thin film. Light transparent efficiency of ITO thin film was improved after CMP process at the optimized process parameters compared to that before CMP process.

  • PDF

The effect on characteristic of ITO(glass) by polyimide thin film process (Polyimide 막 공정이 ITO Glass의 특성에 미치는 영향)

  • Kim, Ho-Soo;Kim, Han-Il;Jung, Soon-Won;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.857-860
    • /
    • 2002
  • The material that is both conductive in electricity and transparent to the visible-ray is called transparent conducting thin film. It has many field of application such as solar cell, liquid crystal display, transparent electrical heater, selective optical filter, and a optical electric device. In this study, indium tin oxide (ITO ; Sn-doped $In_2O_3$) thin films were deposited on $SiO_2$/soda-lime glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy (AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-1000nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

Wet Chemical Surface Modification of ITO by Self Assembled Monolayer for Organic Thin Film Transistor (유기 트랜지스터를 위한 자가조립단층을 이용한 ITO의 습식 표면개질)

  • Jee, Seung-Hyun;Kim, Soo-Ho;Ko, Jae-Hwan;Park, Hoon;Lee, Kwang-Hoon;Yoon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.450-450
    • /
    • 2007
  • Indium tin oxide (ITO), which is used as an electrode in organic thin film transistors (OTFT), was modified with a self-assembled monolayer (SAM) by wet chemical surface modification. The surface of the ITO was treated by dipping method in a solution of 2-chloroethane phosphonic acid (2-CEPA) at room temperature. The work function in the ITO which was modified with the SAM in the 2-CEPA had 5.43eV. A surface energy and a transmittance were unchanged in an error range. On this study, therefore, possibility of ohmic contact is showed in the interface between the ITO and the organic semiconductors. These results suggest that the treatment of the ITO with the SAM can greatly enhance the performance of the OTFT.

  • PDF

An Electrochemical Detector Using Prussian Blue Electrodeposited Indium Tin Oxide Electrode (Prussian blue가 전착된 indium tin oxide 전극을 이용한 전기화학적 검출기)

  • Yi, In-Je;Kim, Ju-Ho;Kang, Chi-Jung;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.449-452
    • /
    • 2005
  • We fabricated an electrochemical detector (ECD) to catalyze redox reaction efficiently by electrodepositing Prussian blue (PB) on the indium tin oxide (ITO) electrode. Capillary electrophoresis (CE) and amperometric method were used. We investigated the PB surface properties by topography from atomic force microscopy (AFM). Also PB film thickness calibration with respect to deposition time and voltage was used to get better PB surFace. The PB thin film of dense and smooth surface could catalyze redox reaction efficiently. Comparing with CE-ECD microchip using bare-lTO electrode, proposed CE-ECD microchip using PB deposited electrode has shown better sensitivity by determining the detected peak current from the electropherograms while the concentration of tested analyzes was maintained the same. It is verified that detection limit can be lowered for 0.01 mM of dopamine and catechol respectively.

Surface Morphology and Electrical Property of PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 표면형상과 전기적 특성)

  • Song, Yon-Ho;Yun, Young-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The metal nitride film formed on the stainless steel bipolar plates represented a microstructural morphology of fine columnar grains with 10 nm diameter and 60nm length in FE-SEM images. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

Thermal treatment effects of sputtered ITO(glass) (Sputtered ITO(glass)의 열처리 효과)

  • Kim, Ho-Soo;Jung, Soon-Won;Koo, Kyung-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.554-557
    • /
    • 2001
  • Indium Tin Oxide(ITO) thin films have been fabricated by the dc magnetron sputtering technique with a target of a mixture $In_{2}O_{3}$(90mol%) and $SnO_{2}$(10mol%). We prepared ITO thin films with substrate temperature 200 to $400^{\circ}C$ and annealing temperature 200 to $500^{\circ}C$. Good polycrystalline-structured ITO films with a low electrical resistivity of $3.4{\times}10^{-4}\Omega{\cdot}cm$ have been obtained. The visible light transmittance of all obtained films was over 80 %.

  • PDF

Thermal treatment effects of sputtered ITO(glass) (Sputtered ITO(glass)의 열처리 효과)

  • 김호수;정순원;구경완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.554-557
    • /
    • 2001
  • Indium Tin Oxide(ITO) thin films have been fabricated by the dc magnetron sputtering technique with a target of a mixture In$_2$O$_3$(90mo1%) and SnO$_2$(10mo1%). We prepared ITO thin films with substrate temperature 200 to 400$^{\circ}C$ and annealing temperature 200 to 500$^{\circ}C$ food polycrystalline-structured ITO films with a low electrical resistivity of 3.4${\times}$10$\^$-4/ Ω$.$cm have been obtained. The visible light transmittance of all obtained films was over 80 %.

  • PDF

Transparent Conductive Indium Zinc Tin Oxide Thin Films for Solar Cell Applications

  • Damisih, Damisih;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.208-208
    • /
    • 2010
  • Indium zinc tin oxide (IZTO) thin films were studied as a possible alternative to indium tin oxide (ITO) films for providing low-cost transparent conducting oxide (TCO) for thin film photovoltaic devices. IZTO films were deposited onto glass substrates at room temperature. A dc/rf magnetron co-sputtering system equipped with a ceramic target of the same composition was used to deposit TCO films. Earlier studies showed that the resistivity value of $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20) films could be lowered to approximately $6{\times}10^{-4}ohm{\cdot}cm$ without sacrificing optical transparency and still maintaining amorphous structure through the optimization of process variables. The growth rate was kept at about 8 nm/min while the oxygen-to-argon pressure ratio varied from 0% to 7.5%. As-deposited films were always amorphous and showed strong oxygen pressure dependence of electrical resistivity and electron concentration values. Influence of forming gas anneal (FGA) at medium temperatures was also studied and proven effective in improving electrical properties. In this study, the chemical composition of the targets and the films varied around the $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20). It was the main objective of this paper to investigate how off-stoichiometry affected TCO characteristics including electrical resistivity and optical transmission. In addition to the composition effect, we have also studied how film properties changed with processing variables. IZTO thin films have shown their potential as a possible alternative to ITO thin films, in such way that they could be adopted in some applications where currently ITO and IZO thin films are being used. Our experimental results are compared to those obtained for commercial ITO thin films from solar cell application view point.

  • PDF

Multifunctional Indium Tin Oxide Thin Films

  • Jang, Jin-Nyeong;Jang, Yun-Seong;Yun, Jang-Won;Lee, Seung-Jun;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.162-162
    • /
    • 2016
  • We present multifunctional indium tin oxide (ITO) thin films formed at room temperature by a normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions (NOIs). The ITO thin film possesses not only low resistivity but also high gas diffusion barrier properties even though it is deposited on a plastic substrate at room temperature without post annealing. Argon neutrals incident to substrates in the sputtering have an optimal energy window from 20 to 30 eV under the condition of blocking energetic NOIs to form ITO nano-crystalline structure. The effect of blocking energetic NOIs and argon neutrals with optimal energy make the resistivity decrease to $3.61{\times}10-4{\Omega}cm$ and the water vapor transmission rate (WVTR) of 100 nm thick ITO film drop to $3.9{\times}10-3g/(m2day)$ under environmental conditions of 90% relative humidity and 50oC, which corresponds to a value of ~ 10-5 g/(m2day) at room temperature and air conditions. The multifunctional ITO thin films with low resistivity and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF