• Title/Summary/Keyword: indirect energy requirement

Search Result 18, Processing Time 0.02 seconds

Decomposition of Direct and Indirect Energy Consumption Growth in Korea from 1990 to 2000 (한국 가정부문 직간접 에너지소비의 증가요인 분석: 1990~2000)

  • Park, Hi-Chun
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.531-553
    • /
    • 2006
  • As energy conservation can be realized through changes in the composition of goods and services consumed, there is a need to assess indirect and total household energy requirements. The Korean household sector was responsible for about 55% of the country's primary energy requirement in the period from 1990 to 2000. And more than 60% of household energy requirement was indirect. Thus, indirect and total rather than direct household energy requirements should be the target of energy conservation policies. Increases in household consumption expenditure were responsible for a relatively high growth of energy consumption. Switching to consumption of less energy intensive products and decrease in energy intensities of products contributed substantially to reduce the increase in total household energy requirement.

  • PDF

Determining the appropriate resting energy expenditure requirement for severe trauma patients using indirect calorimetry in Korea: a retrospective observational study

  • Hak-Jae Lee;Sung-Bak Ahn;Jung Hyun Lee;Ji-Yeon Kim;Sungyeon Yoo;Suk-Kyung Hong
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.337-342
    • /
    • 2023
  • Purpose: This study aimed to compare the resting energy expenditure (REE) measured using indirect calorimetry with that estimated using predictive equations in severe trauma patients to determine the appropriate caloric requirements. Methods: Patients admitted to the surgical intensive care unit between January 2020 and March 2023 were included in this study. Indirect calorimetry was used to measure the patients' REE values. These values were subsequently compared with those estimated using predictive equations: the weight-based equation (rule of thumb, 25 kcal/kg/day), Harris-Benedict, Ireton-Jones, and the Penn State 2003 equations. Results: A total of 27 severe trauma patients were included in this study, and 47 indirect calorimetric measurements were conducted. The weight-based equation (mean difference [MD], -28.96±303.58 kcal) and the Penn State 2003 equation (MD, - 3.56±270.39 kcal) showed the closest results to REE measured by indirect calorimetry. However, the REE values estimated using the Harris-Benedict equation (MD, 156.64±276.54 kcal) and Ireton-Jones equation (MD, 250.87±332.54 kcal) displayed significant differences from those measured using indirect calorimetry. The concordance rate, which the predictive REE differs from the measured REE value within 10%, was up to 36.2%. Conclusions: The REE values estimated using predictive equations exhibited substantial differences from those measured via indirect calorimetry. Therefore, it is necessary to measure the REE value through indirect calorimetry in severe trauma patients.

Estimation of the net energy requirement for maintenance in broilers

  • Liu, Wei;Lin, Chang Hua;Wu, Zheng Ke;Liu, Guo Hua;Yan, Hai Jie;Yang, Hua Ming;Cai, Hui Yi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.849-856
    • /
    • 2017
  • Objective: The net energy requirement for the maintenance ($NE_m$) of broilers was determined using regression models by the indirect calorimetry method (ICM) or the comparative slaughter method (CSM). Methods: A $2{\times}4$ factorial arrangement of treatments including the evaluation method (ICM or CSM) and feed intake (25%, 50%, 75%, or 100% of ad libitum recommended) was employed in this experiment. In the ICM, 96 male Arbor Acres (AA) birds aged d 15 were used with 4 birds per replicate and 6 replicates in each treatment. In the CSM, 116 male AA birds aged d 15 were used. Among these 116 birds, 20 were selected as for initial data and 96 were assigned to 4 treatments with 6 replicate cages and 4 birds each. The linear regression between retained energy (RE) and metabolizable energy intake (MEI) or the logarithmic regression between heat production (HP) and MEI were used to calculate the metabolizable or net energy requirement for maintenance ($ME_m$) or $NE_m$, respectively. Results: The evaluation method did not detect any differences in the metabolizable energy (ME), net energy (NE), and NE:ME of diet, and in the MEI, HP, and RE of broilers. The MEI, HP, and RE of broilers decreased (p<0.01) as the feed intake decreased. No evaluation method${\times}$feed intake interaction was observed on these parameters. The $ME_m$ and $NE_m$ estimated from the linear relationship were 594 and 386 kJ/kg of body weight $(BW)^{0.75}/d$ in the ICM, and 618 and 404 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. The $ME_m$ and $NE_m$ estimated by logarithmic regression were 607 and 448 kJ/kg of $BW^{0.75}/d$ in the ICM, and were 619 and 462 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. Conclusion: The NEm values obtained in this study provide references for estimating the NE values of broiler diets.

Energy requirement of Korean households from 1995 to 2010: An input-output analysis- (한국 가정부문의 직간접 에너지소비: 산업연관분석)

  • Park, Hi-Chun
    • Environmental and Resource Economics Review
    • /
    • v.22 no.3
    • /
    • pp.547-580
    • /
    • 2013
  • As energy conservation can be realized through changes in the composition of goods and services consumed, there is a need to assess indirect and total household energy consumption. The Korean household sector was responsible for more than 55% of Korea's total energy consumption in the 1995 to 2010 period. More than 69% of household energy consumption was indirect. Thus, not only direct but also indirect household energy consumption should be the target of energy conservation. Electricity consumption became in 2009 the main source of household energy consumption in Korea. Households consume more and more electricity intensive goods and services, a sign of increasing living standards. Decrease in energy intensities of products consumed by Korean households contributed greatly to reduce the increase in the total household energy consumption. However, switching took place towards more energy intensive products, thus the structure effect was negative. It is necessary to direct consumption and production towards much less energy intensive goods and services as to reduce energy consumption or its growth rate. The Korean government should readjust low energy and electricity prices to cost-reflective prices levels as these low prices are one of the main reasons for the consumption of more energy intensive products. This study differentiates prices of oil products and electricity between households and industries, as to allow more accurate estimation.

Accuracy of predictive equations for resting energy expenditure (REE) in non-obese and obese Korean children and adolescents

  • Kim, Myung-Hee;Kim, Jae-Hee;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.6 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Weight-controlling can be supported by a proper prescription of energy intake. The individual energy requirement is usually determined through resting energy expenditure (REE) and physical activity. Because REE contributes to 60-70% of daily energy expenditure, the assessment of REE is very important. REE is often predicted using various equations, which are usually based on the body weight, height, age, gender, and so on. The aim of this study is to validate the published predictive equations for resting energy expenditure in 76 normal weight and 52 obese Korean children and adolescents in the 7-18 years old age group. The open-circuit indirect calorimetry using a ventilated hood system was used to measure REE. Sixteen REE predictive equations were included, which were based on weight and/or height of children and adolescents, or which were commonly used in clinical settings despite its use based on adults. The accuracy of the equations was evaluated on bias, RMSPE, and percentage of accurate prediction. The means of age and height were not significantly different among the groups. Weight and BMI were significantly higher in obese group (64.0 kg, $25.9kg/m^2$) than in the non-obese group (44.8 kg, $19.0kg/m^2$). For the obese group, the Molnar, Mifflin, Liu, and Harris-Benedict equations provided the accurate predictions of > 70% (87%, 79% 77%, and 73%, respectively). On the other hand, for non-obese group, only the Molnar equation had a high level of accuracy (bias of 0.6%, RMSPE of 90.4 kcal/d, and accurate prediction of 72%). The accurate prediction of the Schofield (W/WH), WHO (W/WH), and Henry (W/WH) equations was less than 60% for all groups. Our results showed that the Molnar equation appears to be the most accurate and precise for both the non-obese and the obese groups. This equation might be useful for clinical professionals when calculating energy needs in Korean children and adolescents.

Physical activity level, total daily energy expenditure, and estimated energy expenditure in normal weight and overweight or obese children and adolescents (소아청소년의 비만여부에 따른 신체활동수준, 1일 총에너지소비량 및 에너지필요추정량의 평가)

  • Kim, Myung Hee;Kim, Eun Kyung
    • Journal of Nutrition and Health
    • /
    • v.45 no.6
    • /
    • pp.511-521
    • /
    • 2012
  • The purposes of this study were to assess the physical activity level (PAL) and the total daily energy expenditure (TEE) as well as to evaluate the validity of prediction equation for the estimated energy requirement (EER) in normal weight and overweight or obese children and adolescents. The subjects comprised of 100 healthy Korean students aged between 7-18. The anthropometric data was collected. PAL was calculated from the physical activity diary by the 24-hour recall method, and the resting metabolic rate (RMR) was measured by an open-circuit indirect calorimetry using a ventilated hood system. Daily energy expenditure was PAL multiplied by RMR. EER was calculated by using the prediction equation published in KDRIs. There was no significant difference in the means of age and height between the 46 obese subjects and 54 nonobese subjects. The weight and BMI of the obese group (60.2 kg, $25.3kg/m^2$) were significantly higher than those of the nonobese group (42.4 kg, $18.4kg/m^2$). However, PAL was not significantly different between the two groups (nonobese 1.45, obese 1.46). TEE of the obese group (2,212 kcal/day) was significantly higher than that of the nonobese group (1,774 kcal/day). EER (individual PA) and EER (light PA) were significantly higher than TEE (p < 0,001); however, EER (sedentary PA) was not significantly different with TEE in the two groups. These results showed that the levels of physical activity were the same as the sedentary activity both in the nonobese and obese Korean students; moreover, the predictive equation for EER published in KDRI overestimated the TEE of Korean children and adolescents. Therefore, in further research, a new predictive equation for EER should be developed for Korean children and adolescents through the doubly labeled water method.

Net energy content of rice bran, corn germ meal, corn gluten feed, peanut meal, and sunflower meal in growing pigs

  • Li, Yakui;Li, Zhongchao;Liu, Hu;Noblet, Jean;Liu, Ling;Li, Defa;Wang, Fenglai;Lai, Changhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1481-1490
    • /
    • 2018
  • Objective: The objective of this experiment was to determine the net energy (NE) content of full-fat rice bran (FFRB), corn germ meal (CGM), corn gluten feed (CGF), solvent-extracted peanut meal (PNM), and dehulled sunflower meal (SFM) fed to growing pigs using indirect calorimetry or published prediction equations. Methods: Twelve growing barrows with an average initial body weight (BW) of $32.4{\pm}3.3kg$ were allotted to a replicated $3{\times}6$ Youden square design with 3 successive periods and 6 diets. During each period, pigs were individually housed in metabolism crates for 16 d, which included 7 days for adaptation. On d 8, the pigs were transferred to the respiration chambers and fed one of the 6 diets at 2.0 MJ metabolizable energy (ME)/$kg\;BW^{0.6}/d$. Total feces and urine were collected and daily heat production was measured from d 9 to d 13. On d 14 and d15, pigs were fed at their maintenance energy requirement level. On the last day pigs were fasted and fasting heat production was measured. Results: The NE of FFRB, CGM, CGF, PNM, and SFM measured by indirect calorimetry method was 12.33, 8.75, 7.51, 10.79, and 6.49 MJ/kg dry matter (DM), respectively. The NE/ME ratios ranged from 67.2% (SFM) to 78.5% (CGF). The NE values for the 5 ingredients calculated according to the prediction equations were 12.22, 8.55, 6.79, 10.51, and 6.17 MJ/kg DM, respectively. Conclusion: The NE values were the highest for FFRB and PNM and the lowest in the corn co-products and SFM. The average NE of the 5 ingredients measured by indirect calorimetry method in the current study was greater than values predicted from NE prediction equations (0.32 MJ/kg DM).

Metabolizable Energy Requirement of Growing Hanwoo Bulls for Maintenance by Energy Equilibrium Metho (에너지 균형법에 의한 한우 수소의 유지 대사에너지 요구량)

  • Lee, S. C.;Thak, T. Y.;Kim, K. H.;Yoon, S. G.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.123-130
    • /
    • 2003
  • Metabolizable energy requirements for maintenance (MEm) of Hanwoo bulls were estimated in twelves metabolism trials using three different feeds at four stages of body weight(100, 200, 300 and 400kg). Three feeds were composed of 1) concentrates and rice straw, 2) concentrates and mixed grass hay, 3) concentrates and corn silage, respectively. Three energy levels were 1) maintenance (M) requirement, 2) 1.5 ${\times}$ M, and 3) 2.0 ${\times}$ M. All bulls were received 60% of their energy from concentrates and 40% form roughages. Three cattle for each trials fed different energy level were housed in metabolism stalls during the 5days of collection period, a total collection of feces and urine. Thereafter, during the 2days of respiration period the heat production was measured by indirect calorimetry using respiratory chamber. MEm were 99.80, 94.48, 94.80, and 97.68 kcal/W0.75 at 100, 200, 300 and 400kg. Mean value of MEm and efficiency of utilization ME for retained energy(Kg) were 95.80 kcal/W0.75 and 0.44.

Metabolizable energy requirement for maintenance estimated by regression analysis of body weight gain or metabolizable energy intake in growing pigs

  • Liu, Hu;Chen, Yifan;Li, Zhongchao;Li, Yakui;Lai, Changhua;Piao, Xiangshu;van Milgen, Jaap;Wang, Fenglai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1397-1406
    • /
    • 2019
  • Objective: Feed energy required for pigs is first prioritized to meet maintenance costs. Additional energy intake in excess of the energy requirement for maintenance is retained as protein and fat in the body, leading to weight gain. The objective of this study was to estimate the metabolizable energy requirements for maintenance ($ME_m$) by regressing body weight (BW) gain against metabolizable energy intake (MEI) in growing pigs. Methods: Thirty-six growing pigs ($26.3{\pm}1.7kg$) were allotted to 1 of 6 treatments with 6 replicates per treatment in a randomized complete block design. Treatments were 6 feeding levels which were calculated as 50%, 60%, 70%, 80%, 90%, or 100% of the estimated ad libitum MEI ($2,400kJ/kg\;BW^{0.60}\;d$). All pigs were individually housed in metabolism crates for 30 d and weighed every 5 d. Moreover, each pig from each treatment was placed in the open-circuit respiration chambers to measure heat production (HP) and energy retained as protein ($RE_p$) and fat ($RE_f$) every 5 d. Serum biochemical parameters of pigs were analyzed at the end of the experiment. Results: The average daily gain (ADG) and HP as well as the $RE_p$ and $RE_f$ linearly increased with increasing feed intake (p<0.010). ${\beta}$-hydroxybutyrate concentration of serum tended to increase with increasing feed intake (p = 0.080). The regression equations of MEI on ADG were MEI, $kJ/kg\;BW^{0.60}\;d=1.88{\times}ADG$, g/d+782 ($R^2=0.86$) and $ME_m$ was estimated at $782kJ/kg\;BW^{0.60}\;d$. Protein retention of growing pigs would be positive while REf would be negative at this feeding level via regression equations of $RE_p$ and $RE_f$ on MEI. Conclusion: The $ME_m$ was estimated at $782kJ/kg\;BW^{0.60}\;d$ in current experiment. Furthermore, growing pigs will deposit protein and oxidize fat if provided feed at the estimated maintenance level.