• Title/Summary/Keyword: indigenous microbial population

Search Result 14, Processing Time 0.037 seconds

Characterization of Soil Microorganism from Humus and Indigenous Microorganism Amendments

  • Jan, Umair;Feiwen, Rui;Masood, Jan;Chun, Se Chul
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.392-398
    • /
    • 2020
  • This study was conducted to understand the dynamics of microbial communities of soil microorganisms, and their distribution and abundance in the indigenous microorganisms (IMOs) manipulated from humus collected from the forest near the crop field. The soil microorganisms originated from humus and artificially cultured microbial-based soil amendments were characterized by molecular and biochemical analyses. The bacterial population (2 × 106~13 × 106 CFU/g sample) was approximately 100-fold abundant than the fungal population (2 × 104~8 × 104 CFU/g sample). The 16S rDNA and ITS sequence analyses showed that the bacterial and fungal communities in humus and IMOs were mainly composed of Bacillus and Pseudomonas, and Trichoderma and Aspergillus species, respectively. Some of the bacterial isolates from the humus and IMOs showed strong inhibitory activity against soil-borne pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. These bacteria also showed the siderophore production activity as well as phosphate solubilizing activity, which are requisite traits for biological control of plant pathogenic fungi. These results suggest that humus and IMOs could be a useful resource for sustainable agriculture.

지중오존산화시 토양유기물질과 수분이 토착미생물의 생존과 재성장에 미치는 영향

  • 손규동;정해룡;최희철;김수곤;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.334-337
    • /
    • 2003
  • This study was carried out to investigate the effect of soil properties, such as soil organic matter(SOM) content and water content on die-off and regrowth of indigenous microbes due to in-situ ozonation. Four different soils were collected and the soil samples applied to different ozonation time(0-360 min) were incubated during 4 weeks. Population of the indigenous microbes was monitored during incubation period. The number of indigenous microbes in all samples dramatically decreased (more than 90%) within 30 minutes of ozone injection. With increased ozonation time by 360 minutes, the number of the indigenous microbes decreased by 99.99% in all samples. Die-off of the indigenous microbes due to ozone treatment was inversely proportional to SOM and water content. Especially, sample 3 and Sample 4 containing relatively high SOM content and water content showed high regrowth rate, and this resulted from the increase of water soluble and biodegradable organic fraction in soil water after ozone treatment. Soil sample ozonated for 360 minutes showed minor increase in microbial population during 4 weeks of incubation period.

  • PDF

Population Dynamics of Phage-Host System of Microlunatus phosphovorus Indigenous in Activated Sludge

  • Lee, Sang-Hyon;Otawa, Kenichi;Onuki, Motoharu;Satoh, Hiroyasu;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1704-1707
    • /
    • 2007
  • Monitoring of the phage-host system of Microlunatus phosphovorus indigenous in activated sludge was attempted. A laboratory-scale activated sludge process was operated for 5 weeks with synthetic wastewater. The phage-host system population in the process was monitored by plaque assay and FISH methods at every 3 days. During the process operation, the phage-host system populations were more or less steady, except for 1 week in the middle of the operation. In that period, initially M. phosphovorus decreased significantly and its lytic bacteriophages increased, and then M. phosphovorus increased back to its original level while its lytic bacteriophages decreased. This observation suggests that lytic bacteriophages should be considered as one of the biological factors affecting the bacterial population dynamics in activated sludge processes.

Influence of Soil Microbial Biomass on Growth and Biocontrol Efficac of Trichoderma harzianum

  • Bae, Yeoung-Seuk;Guy R. Kundsen;Louise-Marie C. Dandurand
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • The hyphal growth and biocontrol efficacy of Trichodemo harzianum in soil may depend on its interactions with biotic components of the soil environment. The effect of soil microbial biomass on growth and biocontrol efficacy of T. hanianum isolate ThzIDl-M3 (green fluorescent protein transformant) was investigated using artificially prepared different levels of soil microbial biomass (153,328, or 517ug biomass carbon per g of dry soil; BC). The hyphal growth of T. harzanum was significantly inhibited in the soil with 328 or 517 $\mu$g BC compared with 153 ug BC. When ThzIDl-M3 was added to the soils as an alginate pellet formulation, the recoverable population of ThzIDl-M3 varied, but the highest population occurred in 517ug BC. Addition of alginate pellets of ThzIDl-M3 to the soils (10 per 50 g) resulted in increased indigenous microbial populations (total fungi, bacterial fluorescent Pseudomonas app., and actinomycetes). Furthermore, colonizing ability of ThzIDl-M3 on sclerotia of Sclerotinia sclerotiorum was significantly reduced in the soil with high revel of BC. These results suggest that increased soil microbial biomass contributes to increased interactions between introduced T. harzianum and soil microorganisms, consequently reducing the biocontrol efficacy of 1T. harzianum.

Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics

  • Tarekegn, Getinet Mekuriaw;Ji, Xiao-yang;Bai, Xue;Liu, Bin;Zhang, Wenguang;Birungi, Josephine;Djikeng, Appolinaire;Tesfaye, Kassahun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1393-1400
    • /
    • 2018
  • Objective: This study was carried out to assess the haplotype diversity and population dynamics in cattle populations of Ethiopia. Methods: We sequenced the complete mitochondrial cytochrome b gene of 76 animals from five indigenous and one Holstein Friesian${\times}$Barka cross bred cattle populations. Results: In the sequence analysis, 18 haplotypes were generated from 18 segregating sites and the average haplotype and nucleotide diversities were $0.7540{\pm}0.043$ and $0.0010{\pm}0.000$, respectively. The population differentiation analysis shows a weak population structure (4.55%) among the populations studied. Majority of the variation (95.45%) is observed by within populations. The overall average pair-wise distance ($F_{ST}$) was 0.049539 with the highest ($F_{ST}=0.1245$) and the lowest ($F_{ST}=0.011$) $F_{ST}$ distances observed between Boran and Abigar, and Sheko and Abigar from the indigenous cattle, respectively. The phylogenetic network analysis revealed that all the haplotypes detected clustered together with the Bos taurus cattle and converged to a haplogroup. No haplotype in Ethiopian cattle was observed clustered with the reference Bos indicus group. The mismatch distribution analysis indicates a single population expansion event among the cattle populations. Conclusion: Overall, high haplotype variability was observed among Ethiopian cattle populations and they share a common ancestor with Bos taurus.

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Differential Selection by Nematodes of an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.831-838
    • /
    • 2018
  • Trophic interactions of introduced biocontrol fungi with soil animals can be a key determinant in the fungal proliferation and activity. This study investigated the trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes (p < 0.05), regardless of whether Aphelenchoides sp. was added. Without ThzID1-M3, indigenous nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes. In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated. Total fungal biomass in all treatments peaked on day 5 and subsequently decreased. Addition of nematodes increased the total fungal biomass (p < 0.05), but ThzID1-M3 addition did not affect the fungal biomass. Hyphae of total fungi when homogenously distributed did not support the nematode population growth; however, hyphae of the introduced fungus did when densely localized. The results suggest that soil fungivorous nematodes are an important constraint on the hyphal proliferation of fungal agents introduced into natural soils.

Effects of Pb, Cu, and Cr on Anaerobic Biodegradation of Diesel Compounds by Indigenous Bacteria (혐기성 토착미생물의 디젤 생분해에 대한 Pb, Cu, Cr의 영향)

  • Yoo, Chae-won;Lim, Hyeong-Seok;Park, Jae-woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.15-21
    • /
    • 2015
  • Anaerobic biodegradation of diesel with coexisting heavy metals (Pb) was monitored in batch mode. Two different groups of the indigenous bacteria from a site contaminated with diesel and lead were used in this research: the first group was composed of a single species and the second group was composed of several species. The effect of heavy metals on the microbial population was monitored and confirmed the biodegradation mechanism in each combined contaminant. Growth of the microorganisms in 21 days was observed Diesel > Diesel + Pb > Diesel + Cu > Diesel + Pb + Cu > Diesel + Cr > Diesel + Pb + Cr. Indigenous microorganisms showed the adaptation in the Pb contaminate. Interactive toxic effect using AMES test observed larger synergistic effect than antagonistic in Diesel + Cr and Diesel + Pb + Cr. Therefore, the main effects of diesel biodegradation in the present of heavy metals are likely to exist other factors as well as toxic of heavy metals. This is a necessary part of the future studies.

Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation

  • Kim, Yong-Min;Park, Taehyung;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.485-496
    • /
    • 2019
  • Sealing of leakage in waterfront or water-retaining structures is one of the major issues in geotechnical engineering practices. With demands for biological methods as sustainable ground improvement techniques, bioclogging, defined as the reduction in hydraulic conductivity of soils caused by microbial activities, has been considered as an alternative to the chemical grout techniques for its economic advantages and eco-friendliness of microbial by-products. This study investigated the feasibility of bioaugmentation and biostimulation methods to induce fermentation-based bioclogging effect in coarse sands. In the bioaugmentation experiments, effects of various parameters and conditions, including grain size, pH, and biogenic gas generation, on hydraulic conductivity reduction were examined through a series of column experiments while Leuconostoc mesenteroides, which produce an insoluble biopolymer called dextran, was used as the model bacteria. The column test results demonstrate that the accumulation of bacterial biopolymer can readily reduce the hydraulic conductivity by three-to-four orders of magnitudes or by 99.9-99.99% in well-controlled environments. In the biostimulation experiments, two inoculums of indigenous soil bacteria sampled from waterfront embankments were prepared and their bioclogging efficiency was examined. With one inoculum containing species capable of fermentation and biopolymer production, the hydraulic conductivity reduction by two orders of magnitude was achieved, however, no clogging was found with the other inoculum. This implies that presence of indigenous species capable of biopolymer production and their population, if any, play a key role in causing bioclogging, because of competition with other indigenous bacteria. The presented results provide fundamental insights into the bacterial biopolymer formation mechanism, its effect on soil permeability, and potential of engineering bacterial clogging in subsurface.

Molecular and Cultivation-Based Characterization of Bacterial Community Structure in Rice Field Soil

  • KIM MI-SOON;AHN JAE-HYUNG;JUNG MEE-KUM;YU JI-HYEON;JOO DONGHUN;KIM MIN-CHEOL;SHIN HYE-CHUL;KIM TAESUNG;RYU TAE-HUN;KWEON SOON-JONG;KIM TAESAN;KIM DONG-HERN;KA JONG-OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1087-1093
    • /
    • 2005
  • The population diversity and seasonal changes of bacterial communities in rice soils were monitored using both culture-dependent approaches and molecular methods. The rice field plot consisted of twelve subplots planted with two genetically-modified (GM) rice and two non-GM rice plants in three replicates. The DGGE analysis revealed that the bacterial community structures of the twelve subplot soils were quite similar to each other in a given month, indicating that there were no significant differences in the structure of the soil microbial populations between GM rice and non-GM rice during the experiment. However, the DGGE profiles of June soil after a sudden flooding were quite different from those of the other months. The June profiles exhibited a few intense DNA bands, compared with the others, indicating that flooding of rice field stimulated selective growth of some indigenous microorganisms. Phylogenetic analysis of l6S rDNA sequences from cultivated isolates showed that, while the isolates obtained from April soil before flooding were relatively evenly distributed among diverse genera such as Arthrobacter, Streptomyces, Terrabacter, and Bacillus/Paenibacillus, those from June soil after flooding mostly belonged to the Arthrobacter species. Phylogenetic analysis of 16S rDNA sequences obtained from the soil by cloning showed that April, August, and October had more diverse microorganisms than June. The results of this study indicated that flooding of rice fields gave a significant impact on the indigenous microbial community structure; however, the initial structure was gradually recovered over time after a sudden flooding.