• Title/Summary/Keyword: indicial functions

Search Result 5, Processing Time 0.022 seconds

A parametric study of indicial function models in bridge deck aeroelasticity

  • Borri, C.;Costa, C.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.405-420
    • /
    • 2004
  • In common approaches, bridge dynamics under wind action is analyzed by modeling the interaction between fluid and structure by means of transient wind loads acting over the structure itself. Amid various possible manners to describe such types of loads, a representation based on families of 'indicial functions' is adopted here. The aim is to investigate its flexibility to capture the main features of wind-bridge interaction. A set of coefficients is involved in indicial functions. The values that one may attribute to them suffer uncertainties coming from experimental errors affecting data. Here, the sensitivity of a 2-DOF schematic model to the variations of these coefficients is investigated at fixed values of dynamic derivatives and for various types of indicial functions. It is shown how parameter variations influence phase portraits.

Evaluation of Rectangular Section Flutter Derivatives by CFD (CFD에 의한 사각단면의 플러터계수 산출)

  • Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.693-700
    • /
    • 2003
  • An evaluation method for flutter derivatives is proposed, using indicial functions of structural members produced by Computational Fluid Dynamics (CFD). Flutter derivatives are obtained by Fourier integration of indicial functions. Instead of direct simulation of oscillating objects, only the calculation of time-dependent lift and moment variations of fixed objects with constant attack angle are necessary.The Finite Element Method (FEM) is developed as a tool for the numerical method. For two rectangular sections having different aspect ratios, the numerical analysis and wind tunnel test are carried out to inspect the adequacy of this study. The results proved to be good, and they could be used for a preliminary design.

CFD calculations of indicial lift responses for bluff bodies

  • Turbelin, Gregory;Gibert, Rene Jean
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.245-256
    • /
    • 2002
  • Two-dimensional formulations for wind forces on elongated bodies, such as bridge decks, are reviewed and links with expressions found in two-dimensional airfoil theory are pointed out. The present research focus on indicial lift responses and admittance functions which are commonly used to improve buffeting analysis of bluff bodies. A computational fluid dynamic (CFD) analysis is used to derive these aerodynamic functions for various sections. The numerical procedure is presented and results are discussed which demonstrate that the particular shapes of these functions are strongly dependent on the evolution of the separated flows around the sections at the early stages.

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

Refined optimal passive control of buffeting-induced wind loading of a suspension bridge

  • Domaneschi, M.;Martinelli, L.
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2014
  • Modern design of long suspension bridges must satisfy at the same time spanning very long distances and limiting their response against several external loads, even if of high intensity. Structural Control, with the solutions it provides, can offer a reliable contribution to limit internal forces and deformations in structural elements when extreme events occur. This positive aspect is very interesting when the dimensions of the structure are large. Herein, an updated numerical model of an existing suspension bridge is developed in a commercial finite element work frame, starting from original data. This model is used to reevaluate an optimization procedure for a passive control strategy, already proven effective with a simplified model of the buffeting wind forces. Such optimization procedure, previously implemented with a quasi-steady model of the buffeting excitation, is here reevaluated adopting a more refined version of the wind-structure interaction forces in which wind actions are applied on the towers and the cables considering drag forces only. For the deck a more refined formulation, based on the use of indicial functions, is adopted to reflect coupling with the bridge orientation and motion. It is shown that there is no variation of the previously identified optimal passive configuration.