• Title/Summary/Keyword: independent gait

Search Result 113, Processing Time 0.026 seconds

The reliability test of a smart insole for gait analysis in stroke patients

  • Seo, Tae-Won;Lee, Jun-Young;Lee, Byoung-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Background: This study analyzed the reliability of smart guides for gait analysis in patients with stroke. Design: Cross-sectional study. Methods: The participants of the study were 30 patients with stroke who could walk more than 10 m and had an MMSE-K test score of ≥24. Prior to the experiment, the subjects or their guardians entered their demographic characteristics including gender, age, height, weight into the prepared computer. The experiment was conducted in a quiet, comfortable, and independent location, and the patient was reminded of the equipment description, precautions, and safety rules for walking. A smart insole was inserted into the shoes of the patients and the shoes were put on before the patients walked three times on the 5-m gait analysis system mat installed in the laboratory. Results: The reliability of the equipment was compared with that of the gait analysis system, and the results of this study are as follows: among the gait analysis items, velocity had an ICC=0.982, the cadence had an ICC=0.905, the swing phase on the side of the gait cycle had an ICC=0.893, the swing phase on the side of the gait had an ICC=0.839, that on the non-affected side had an ICC=0.939, single support on the affected side had an ICC=0.812, and support on the non-affected side had an ICC=0.767. Conclusion: The results of this study indicate no statistical difference between the smart insole and the gait analysis system. Therefore, it is believed that real-time gait analysis through smart insole measurement could help patients in rehabilitation.

Correlation Analysis of Pelvic Tilt and Gait according to the Paralytic Side of Stroke Patients (뇌졸중 환자의 마비쪽에 따른 골반의 기울임과 보행의 상관관계 분석)

  • Yong Seon, Lee;Jong-Hyuk, Yun
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.111-120
    • /
    • 2022
  • Objective: This study investigated the effect of pelvic tiltng according to the paralytic side on gait in stroke patients during a 10 m functional movement timed up and go (TUG) test. Method: In this study, gait parameters were measured using a gait analyzer for 20 stroke patients and their gait was analyzed during a 10 m TUG test. For statistical analysis, an independent sample t-test were performed for age, height, and weight among general characteristics of subjects and homogeneity was tested by performing a chi-square test for gender, paralysis side, period of onset, and K-MMSE score. In order to understand the relationship between each variable, Pearson correlation analysis was performed on the variables. Results: First, the right-hand paralyzed group showed correlations in cadence and gait velocity in the up and down tilt of the pelvis, and the left-hand paralyzed group showed correlations in cadence and step length in the anterior and posterior tilt of the pelvis. Second, the tilt of the pelvis was correlated with the Sit to stand, walk forward, walk backwards, turn around at the end point, sit on a chair and the total TUG time in the right hemiplegic group compared to the left hemiplegic group. Conclusion: In this study, a significant correlation was confirmed as a result of gait analysis of right-handed stroke patients divided into a right paraplegic group and a left paraplegic group. In the future, it is suggested that treatment for improving gait of stroke patients should be treated differently for the right and left paralyzed side.

Analysis of Obstacle Gait Using Spatio-Temporal and Foot Pressure Variables in Children with Autism (자폐성 장애 아동의 시공간 및 압력분포 변인을 통한 장애물보행 분석)

  • Kim, Mi-Young;Choi, Bum-Kwon;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.459-466
    • /
    • 2011
  • The purpose of this study was to analyze of obstacle gait using spatio-temporal and foot pressure variables in children with autism. Fifteen children with autism and fifteen age-matched controls participated in the study. Spatio-temporal and foot pressure variables was investigated using GAITRite pressure sensor system. Each footprint was divided into 12 equal trapezoids and after that the hindfoot, midfoot and forefoot analysis was developed. Independent t-test was applied to compare the gait variables between the groups. The results showed that the autism group were significantly decreased in velocity, cadence, cycle and swing time compared to the control group. The autism group were significantly increased in step width and toe out angle compared to the control group. The autism group were significantly increased at midfoot and forefoot of lateral part of footprint and forefoot of medial part of footprint in the peak time compared to the control group. The autism group were significantly increased at midfoot and hindfoot in $P^*t$, at midfoot in active area, and at hindfoot in peak pressure compared to the control group. In conclusion, the children with autism showed abnormal obstacle gait characteristics due to muscle hypotonia, muscle rigidity, akinesia, bradykinesia and postural control impairments.

Influence of Vibration on Golgi Tendon Organ and Hold-Relax of PNF on Muscular Activity and Gait Factors on Delayed Onset Muscle Soreness

  • Jun, Hyun ju;Yang, Hoe Song;Yoo, Young Dae;Park, So Hui;Jegal, Hyuk;Jeong, Chan Joo
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.2
    • /
    • pp.859-864
    • /
    • 2015
  • The purpose of this study was to investigate the effects of vibration on Golgi tendon organ(GTO) and Hold-Relax of PNF in muscular activity and gait factors on Delayed Onset Muscle Soreness(DOMS). This study was conducted on 20 subjects. they were divided into two groups; Hold-Relax of PNF(n=10), Vibration on GTO(n=10). Both of the group was performed interventions 1 times a day for 3 days. The data was analyzed by the repeated-ANOVA for comparing before, after 24h and after 48h changes of factors in each group and the Independent t-test for comparing the between groups. The results are as follows. There was statistically significant difference of before, after 24h and after 48h vibration on GTO group and Hold-Relax of PNF group in muscular activity and gait factors on DOMS.(p<0.05). There was no statistically significant difference of between vibration on GTO group, but there was statistically significant difference Hold-Relax of PNF group in EMG, step width, step length, stride length(p>0.05). As a results of this study, Hold-Relax of PNF group are effective in improving muscular activity and gait factors.

Effects of task-oriented training for Gross Motor Function Measure, balance and gait function in persons with cerebral palsy

  • Han, Hyun-Kyung;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Objective: This study was to investigate the effects of Task-oriented training for Gross Motor Function Measure (GMFM), gait and balance function in cerebral palsy. Design: Randomized controlled trials. Methods: Twenty four subjects were recruited by means of a convenience sampling from Kangseo-Gu G rehabilitation center. Subjects were 24 inpatients and were randomly divided into a task-oriented training group and a conventional group. Twelve patients were experimental group who executed the task-oriented training (5 times/wk) for 4 weeks. The task-oriented program mainly focused on the capabilities of independent walking, with the angle of inclination set at 0 degrees and walking at a self-selected comfortable speed. In addition, balance training included the one-legged standing with weight-shifting and task-oriented training. Twelve patients were control group who executed only general conventional therapy (5 times/wk) for 4 weeks. All subjects were evaluated about the motor function, gait and balance function. Subjects have conducted the measured variables, GMFM, GAITRite, PDM Multifunction Force Measuring Plate after treatment. Results: There was statistically significant increase of Gross Motor Function Measure scores of the experimental group and control group after 4 weeks (p<.05). There was statistically significant increase of gait and balance function of the experimental group after 4 weeks of task-oriented training (p<.05). The experimental group showed a significantly improvement in GMFM, gait, and balance compared to the control group (p<0.05). Conclusions: This study proved that task-oriented training after stroke can improve Gross Motor Function Measure, gait and balance. Thus this study can suggest that task-oriented training for gross motor function, gait and balance be effective on the cerebral palsy.

Comparison of vertical ground reaction forces between female elderly and young adults during sit-to-stand and gait using the Nintendo Wii Balance Board

  • Lim, Ji Young;Yi, Yoonsil;Jung, Sang Woo;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.4
    • /
    • pp.179-185
    • /
    • 2018
  • Objective: The purpose of this study was to analyze and compare vertical ground reaction forces during sit to stand (STS) and gait between female elderly and young individuals using the Wii Balance Board (WBB). Design: Cross-sectional study. Methods: Fifty-one female elderly people (age: $75.18{\pm}4.60years$), and 13 young people (age: $29.85{\pm}3.69years$) performed the five times STS test and gait respectively on the WBB. We analyzed time (s), vertical peak (%), integral summation (Int_SUM, %), and counter variables (%) in STS and 1st peak (body weight, BW%), 2nd peak (BW%), peak minimum (BW%), time (second), center of pressure (COP) path length (mm), and Int_SUM (BW%) in gait. The independent t-test was used to assess for differences in STS, gait ability, and general characteristics between the female elderly group and young adults group. With the first and last trials excluded, the mean value was obtained from the middle three of the five trials. Results: During STS, Int_SUM and time of young adults were significantly less than of the female elderly subjects. There were no significant differences in peak and counter variables. In gait, all variables (1st peak, 2nd peak, min, time, COP_path, and Int_SUM) showed significant differences between groups (p<0.05). This study demonstrated that the validity of vertical ground reaction forces occurring during STS and gait was significant in female elderly and young adults. Conclusions: Based on the measurement of vertical ground reaction forces in STS and gait using the WBB, it is possible to clinically improve the quality of geriatric physical therapy. Further studies are necessary to examine concurrent validity of elderly patients who have undergone total hip or knee replacement.

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.

A non-merging data analysis method to localize brain source for gait-related EEG (보행 관련 뇌파의 신호원 추정을 위한 비통합 데이터 분석 방법)

  • Song, Minsu;Jung, Jiuk;Jee, In-Hyeog;Chu, Jun-Uk
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.679-688
    • /
    • 2021
  • Gait is an evaluation index used in various clinical area including brain nervous system diseases. Signal source localizing and time-frequency analysis are mainly used after extracting independent components for Electroencephalogram data as a method of measuring and analyzing brain activation related to gait. Existing treadmill-based walking EEG analysis performs signal preprocessing, independent component analysis(ICA), and source localizing by merging data after the multiple EEG measurements, and extracts representative component clusters through inter-subject clustering. In this study we propose an analysis method, without merging to single dataset, that performs signal preprocessing, ICA, and source localization on each measurements, and inter-subject clustering is conducted for ICs extracted from all subjects. The effect of data merging on the IC clustering and time-frequency analysis was investigated for the proposed method and two conventional methods. As a result, it was confirmed that a more subdivided gait-related brain signal component was derived from the proposed "non-merging" method (4 clusters) despite the small number of subjects, than conventional method (2 clusters).

The Bobath Approach for Walking Improvement on Child with Mental Retardation (정신지체 아동의 보행능력 향상을 위한 보봐스 접근법 : 개별실험연구)

  • Ro, Hyo-Lyun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • Purpose : In this case report, we demonstrated the improvement of gait ability on the child who has mental retardation with incomplete gait pattern. Methods : The subject was a 4 years old boy with mental retardation. We applied the Bobath approach to the subject. Treatments included to facilitate trunk alignment and stability, and to train weight bearing and shifting, to facilitate pelvis posterior-anterior movement, and to train walk especially stance phase and assist up-down stairs locomotion in environment similar to actual daily life. It was performed 24 sessions for 12 weeks. Results : With this treatment, he could accomplish dynamic standing stability and he could independent walk at the out door after 12 weeks. In gross motor function measure(GMFM), total motor function was improved to 85.6% from 75.7%. Conclusion : The gait ability of child with mental retardation was improved by using the bobath approach.

  • PDF

Walking load model for single footfall trace in three dimensions based on gait experiment

  • Peng, Yixin;Chen, Jun;Ding, Guo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.937-953
    • /
    • 2015
  • This paper investigates the load model for single footfall trace of human walking. A large amount of single person walking load tests were conducted using the three-dimensional gait analysis system. Based on the experimental data, Fourier series functions were adopted to model single footfall trace in three directions, i.e. along walking direction, direction perpendicular to the walking path and vertical direction. Function parameters such as trace duration time, number of Fourier series orders, dynamic load factors (DLFs) and phase angles were determined from the experimental records. Stochastic models were then suggested by treating walking rates, duration time and DLFs as independent random variables, whose probability density functions were obtained from experimental data. Simulation procedures using the stochastic models are presented with examples. The simulated single footfall traces are similar to the experimental records.