• Title/Summary/Keyword: incompressible surface

Search Result 231, Processing Time 0.017 seconds

BICOMPRESSIBLE SURFACES AND INCOMPRESSIBLE SURFACES

  • Saito, Toshio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.515-520
    • /
    • 2019
  • We give new evidence that "complicated" Heegaard surfaces behave like incompressible surfaces. More precisely, suppose that a closed connected orientable 3-manifold M contains a closed connected incompressible surface F which separates M into two (connected) components $M_1$ and $M_2$. Let S be a Heegaard surface of M. Our result is that if the Hempel distance of S is at least four, then S is isotoped so that $S{\cap}M_i$ is incompressible for each i = 1, 2.

AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU (GPU를 이용한 효율적인 비압축성 자유표면유동 해석)

  • Hong, H.E.;Ahn, H.T.;Myung, H.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

Numerical Simulation of Free Surface Flows Using the Roe's Flux-difference Splitting Scheme (Roe의 Flux-difference Splitting 기법을 이용한 자유표면 유동 모사)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • A code is developed to simulate incompressible free surface flows using the Roe's flux-difference splitting scheme. An interface of two fluids is considered as a moving contact discontinuity. The continuities of pressure and normal velocity across the interface are enforced by the conservation law in the integral sense. The fluxes are computed using the Roe's flux-difference splitting scheme for two incompressible fluids. The interface can be identified based on the computed density distribution. However, no additional treatment is required along the interface during the whole computations. Complicated time evolution of the interface including topological change can be captured without any difficulties. The developed code is applied to simulate the Rayleigh-Taylor instability of two incompressible fluids in the density ratio of 7.2:1 and the broken dam problem of water-air. The present results are compared with other available results and good agreements are achieved for the both cases.

Air Compressibility Effect in CFD-based Water Impact Analysis (CFD 기반 유체충격 해석에서 공기 압축성 효과)

  • Tran, Huu Phi;Ahn, Hyung-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

Decomposition of Surface Pressure Fluctuations on Vehicle Side Window into Incompressible/compressible Ones Using Wavenumber-frequency Analysis (파수-주파수 분석을 이용한 자동차 옆 창문 표면 압력 섭동의 비압축성/압축성 성분 분해)

  • Lee, Songjune;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.765-773
    • /
    • 2016
  • The vehicle interior noise caused by exterior fluid flow field is one of critical issues for product developers in a design stage. Especially, turbulence and vortex flow around A-pillar and side mirror affect vehicle interior noise through a side window. The reliable numerical prediction of the noise in a vehicle cabin due to exterior flow requires distinguishing between the aerodynamic (incompressible) and the acoustic (compressible) surface pressures as well as accurate computation of surface pressure due to this flow, since the transmission characteristics of incompressible and compressible pressure waves are quite different from each other. In this paper, effective signal processing technique is proposed to separate them. First, the exterior flow field is computed by applying computational aeroacoustics techniques based on the Lattice Boltzmann method. Then, the wavenumber-frequency analysis is performed for the time-space pressure signals in order to characterize pressure fluctuations on the surface of a vehicle side window. The wavenumber-frequency diagrams of the power spectral density shows clearly two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface pressure fluctuations. Lastly, decomposition of surface pressure fluctuation into incompressible and compressible ones is successfully accomplished by taking the inverse Fourier transform on the wavenumber-frequency diagrams.

Quadrilateral-Triangular Mixed Grid System for Numerical Analysis of Incompressible Viscous Flow (비압축성 점성 유동의 수치적 해석을 위한 사각형-삼각형 혼합 격자계)

  • 심은보;박종천;류하상
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • A quadrilateral-triangular mixed grid method for the solution of incompressible viscous flow is presented. The solution domain near the body surface is meshed using elliptic grid geneator to acculately simulate the viscous flow. On the other hand, we used unstructured triangular grid system generated by advancing front technique of a simple automatic grid generation algorithm in the rest of the computational domain. The present method thus is capable of not only handling complex geometries but providing accurate solutions near body surface. The numerical technique adopted here is PISO type finite element method which was developed by the present author. Investigations have been made of two-dimensional unsteady flow of Re=550 past a circular cylinder. In the case of use of the unstructured grid only, there exists a considerable amount of difference with the existing results in drag coefficient and vorticity at the cylinder surface; this may be because of the lack of the grid clustering to the surface that is a inevitable requirement to resolve the viscous flow. However, numerical results on the mixed grid show good agreements with the earlier computations and experimental data.

  • PDF

Parametric Analysis of Slamming Forces: Compressible and Incompressible Phases

  • Campana, E.F.;Carcaterra, A.;Ciappi, E.;Iafrati, A.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2000
  • The slamming force occurring in the free fall impact of cylindrical bodies on the water surface is analyzed in both compressible and incompressible stages. In the compressible phase the hydrodynamic analysis is carried on by the acoustic approximation, obtaining a closed form expression for the maximum impact force. The incompressible analysis is approached through and unsteady boundary element method to compute the free surface evolution and the slamming force on the body. A similar behavior seems to characterize the maximum slamming force versus a dimensionless mass parameter.

  • PDF

Study on Optimization of Aerodynamic Design of A Jet Fan (제트송풍기의 공력설계 최적화에 관한 연구)

  • Seo, Seoung-Jin;Kim, Kwang-Yong;Chang, Dong-Wook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.439-443
    • /
    • 2002
  • In this study, three-dimensional incompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, incompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Sweep angles and maximum thickness of blade are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and Full Factorial design and relations between design variables and response surface are examined.

  • PDF

NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD (입자법을 이용한 댐 붕괴의 수치 시뮬레이션)

  • Lee, B.H.;Jung, S.J.;Kim, Y.H.;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.