• Title/Summary/Keyword: incompressible Navier-Stokes equations

Search Result 292, Processing Time 0.023 seconds

An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations (비압축성 Navier-Stokes 방정식에 대한 내재적 속도 분리 방법)

  • Kim KyounRyoun;Baek Seunr-Jin;Sung Hyunn Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • An efficient numerical method to solve the unsteady incompressible Navier-Stokes equations is developed. A fully implicit time advancement is employed to avoid the CFL(Courant-Friedrichs-Lewy) restriction, where the Crank-Nicholson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity-pressure decoupling is achieved in conjunction with the approximate factorization. Main emphasis is placed on the additional decoupling of the intermediate velocity components with only n th time step velocity The temporal second-order accuracy is Preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving the turbulent minimal channel flow unit.

  • PDF

Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations (부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산)

  • 강동진;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.755-761
    • /
    • 1987
  • Two-Dimensional incompressible laminar boundary layer with the reversed flow region is computed using the parially parabolized Navier-Stokes equations in primitive variables. The velocities and the pressure are explicity coupled in the difference equation and the resulting penta-diagonal matrix equations are solved by a streamwise marching technique. The test calculations for the trailing edge region of a finite flat plate and Howarth's linearly retarding flows demonstrate that the method is accurate, efficient and capable of predicting the reversed flow region.

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN HETEROGENEOUS MEDIA

  • Pak, Hee Chul
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.335-347
    • /
    • 2006
  • The homogenization of non-stationary Navier-Stokes equations on anisotropic heterogeneous media is investigated. The effective coefficients of the homogenized equations are found. It is pointed out that the resulting homogenized limit systems are of the same form of non-stationary Navier-Stokes equations with suitable coefficients. Also, steady Stokes equations as cell problems are identified. A compactness theorem is proved in order to deal with time dependent homogenization problems.

  • PDF

FINITE ELEMENT ANALYSIS FOR A MIXED LAGRANGIAN FORMULATION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.87-118
    • /
    • 1997
  • This paper is concerned with a mixed Lagrangian formulation of the wiscous, stationary, incompressible Navier-Stokes equations $$ (1.1) -\nu\Delta u + (u \cdot \nabla)u + \nabla_p = f in \Omega $$ and $$ (1.2) \nubla \cdot u = 0 in \Omega $$ along with inhomogeneous Dirichlet boundary conditions on a portion of the boundary $$ (1.3) u = ^{0 on \Gamma_0 _{g on \Gamma_g, $$ where $\Omega$ is a bounded open domain in $R^d, d = 2 or 3$, or with a boundary $\Gamma = \partial\Omega$, which is composed of two disjoint parts $\Gamma_0$ and $\Gamma_g$.

  • PDF

Discretization of Pressure-Poisson Equation for Solving Incompressible Navier-Stokes Equations Using Non-Staggered Grid (정규격자를 사용한 비압축성 Navier-Stokes 방정식의 수치해석을 위한 압력 Poisson 방정식의 이산화)

  • Kim Y. G.;Kim H. T.;Kim J. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.96-101
    • /
    • 1998
  • Various discretiation methods of Laplacian operator in the Pressure-Poisson equation are investigated for the solution of incompressible Navier-Stokes equations using the non-staggered grid. Laplacian operators previously proposed by other researchers are applied to a Driven-Cavity problem. The computational results are compared with those of Ghia. The results show the characteristics of the discrete Laplacian operators.

  • PDF

Numerical Simulation of Three Dimensional Incompressible Flows Using the Navier-Stokes Equations with the Artificial Dissipation Terms and a Multigrid Method (다중격자와 인공점성항을 이용한 3차원 비압축성 흐름에 관한 수치모형 해석)

  • Park, Ki-Doo;Lee, Kil-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1392-1396
    • /
    • 2007
  • The governing equations in generalized curvilinear coordinates for 3D laminar flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms. and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. Multigrid methods are also applied because solving the equations on the coarse grids requires much less computational effort per iteration than on the fine grid. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Humphrey et al., 1977).

  • PDF

NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATION

  • CHOI, YONGHO;JEONG, DARAE;LEE, SEUNGGYU;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.103-121
    • /
    • 2015
  • In this paper, we briefly review and describe a projection algorithm for numerically computing the two-dimensional time-dependent incompressible Navier-Stokes equation. The projection method, which was originally introduced by Alexandre Chorin [A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), pp. 745-762], is an effective numerical method for solving time-dependent incompressible fluid flow problems. The key advantage of the projection method is that we do not compute the momentum and the continuity equations at the same time, which is computationally difficult and costly. In the projection method, we compute an intermediate velocity vector field that is then projected onto divergence-free fields to recover the divergence-free velocity. Numerical solutions for flows inside a driven cavity are presented. We also provide the source code for the programs so that interested readers can modify the programs and adapt them for their own purposes.

A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Yongsik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1737-1751
    • /
    • 2013
  • An efficient and stable point collocation scheme based on a meshfree method is studied for the stationary incompressible Navier-Stokes equations. We describe the diffuse derivatives associated with the moving least square method. Using these diffuse derivatives, we propose a point collocation method to fit in solving the Navier-Stokes equations which improves the stability of the direct point collocation scheme. The convergence of the numerical solution is investigated from numerical examples. The driven cavity ow and the backward facing step ow are implemented for the reliability of the scheme. Also, the viscous ow on complicated geometry is successfully calculated such as the ow past a circular cylinder in duct.

Three Dimensional Incompressible Unsteady Flows in a Circular Tube Using the Navier-Stokes Equations With Beam and Warming Method (원형관에서의 음해법을 이용한 차원 3차원 비압축성 부정류 흐름에 관한 수치모의)

  • Park, Ki-Doo;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1624-1629
    • /
    • 2008
  • The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. The computational technique implements the implicit approximate factorization method of the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI) method. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).

  • PDF