• Title/Summary/Keyword: inclusion bodies

Search Result 181, Processing Time 0.022 seconds

In Vitro Formation of Active Carboxypeptidase Y from Pro-Carboxypeptidase Y Inclusion Bodies by Fed-Batch Operation

  • Hahm, Moon-Sun;Chung, Bong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.887-889
    • /
    • 2001
  • The gene encoding yeast pro-carboxypeptidase Y (pro-CPY) has been cloned and expressed in Escherichia coli. Most of the expressed pro-CPY was accumulated as cytoplasmic insoluble aggregates. In our previous study, active CPY was obtained by renaturation of entirely denatured pro-CPY followed by in vitro proteolytic processing with proteinase K along with the activation process. The same refolding process was performed to produce an active CPY from pro-CPY inclusion bodies with renaturation buffers containing proteinase K at different concentrations. The refolding efficiency decreased from $25\%\;to\;2\%$ in the renaturation buffers containing proteinase K at concentrations of $60{\mu}g/ml\;and\;0.6{\mu}g/mi$, respectively. In an attempt to increase the refolding efficiency with a lesser amount of proteinase K, a novel fed-batch refolding process was developed. In a fed-batch refolding, 99 ml of the renaturation buffer containing pro-CPY was gradually added into 1 ml of the renaturation buffer containing $60{\mu}g/ml$ of proteinase K to give a final proteinase K concentration of $0.6{\mu}g/ml$. The fed-batch refolding process resulted in a refolding efficiency of $18\%$, which corresponded to a 9-fold increase over that ($2\%$) in the batch process.

  • PDF

Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Inhibits TBK1 to Evade Interferon-Mediated Response

  • Lee, Jae Kyung;Shin, Ok Sarah
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.226-232
    • /
    • 2021
  • Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFNmediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.

Partitioning of Recombinant Human Interleukin-2 in a Poly(ethylene glycol)-Dextran Aqueous Two-Phase System

  • Lee, In-Young;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.135-140
    • /
    • 1992
  • The partitioning of recombinant human interleukin-2(rhII-2) in PEG 8000-dextran 38800 aqueous two-phase system has been investigated using three different sources of rhIL-2. In the case of pure rhIL-2, the solubility in a PEG-dextran two-phase system was low and most of rhIL-2 was partitioned into the bottom phase. For the recovery of rhIL-2 from insoluble protein aggregates, the inclusion bodies of recombinant E. coli were solubilized by the treatment with sodium dodecyl sulfate (SDS). The addition of SDS significantly enhanced not only the solubility of rhIL-2 but also the partitioning of rhIL-2 to the top phase. When the ratio of SDS to rhIL-2 was 2.0, the partition coefficient(K) and the recovery yield(Y) at the top phase were 4.5 and 88%, respectively, at pH 6.8. In order to reduce the recovery steps further, SDS was directly added to the intact recombinant E. coli cells and then partitioned into the PEG/dextran aqueous two-phase system. The observed partition coefficient ($K{\cong{3.0$) and recovery yield ($Y{\geq}80%$ )of this method were comparable to the rhIL-2 recovery from insoluble protein aggregates. The results obtained in this work indicate that PEG-dextran two-phase partitioning might provide a simple way for the recovery and partial purification of recombinant proteins which are produced as inclusion bodies.

  • PDF

High Voltage Electron Microscopy of Structural Patterns of Plastid Crystalline Bodies in Sedum rotundifolium (HVEM에 의한 둥근잎꿩의 비름 (Sedum rotundifolium L.) 색소체의 결정체 구조)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.73-82
    • /
    • 2006
  • Major contributions has been made in cellular ultrastructure studies with the use of high voltage electron microscopy (HVEM) and tomography. Applications of HVEM, accompanied by appropriate image processing, have provided great improvements in the analysis of three-dimensional cellular structures. In the present study, structural patterns of the crystalline bodies that are distinguished in mesophyll plastids of CAM-performing Sedum rotundifolium L., have been investigated using HVEM and tomography. Tilting, and diffraction pattern analysis were performed during the investigation. The titlting was performed at ${\pm}60^{\circ}\;with\;2^{\circ}$ increments while examining serial sections ranging from 0.125 to $1{\mu}m$ in thickness. The young plastids exhibited crystalline inclusion bodies that revealed a peculiar structural pattern. They were irregular in shape and also variable in size. Their structural attributes affected the plastid morphology. The body consisted of a large number of tubular elements, often reaching up to several thousand in number. The tubular elements typically aggregated to form a fluster The elements demonstrated either a parallel or lattice arrangement depending on the sectioning angle. The distance between the elements was approximately 20nm as demonstrated by the diffraction analysis. HVEM examination of the serial sections revealed an occasional fusion or branching of elements within the inclusion bodies. Finally, a three-dimensional reconstruction of the plastid crystalline bodies has been attempted using two different image processing methods.

Rabbit Antibody Raised against Murine Cyclin D3 Protein Overexpressed in Bacterial System

  • Jun, Do-Youn;Kim, Mi-Kyung;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.474-481
    • /
    • 1996
  • Since the commercially available rabbit anti-cyclin D3, generated from c-terminal 16 amino acid residues which are common to human and murine cyclin D3, is highly cross-reactive with many other cellular proteins of mouse, a new rabbit polyclonal anti-cyclin D3 has been raised by using murine cyclin D3 protein expressed at a high level in Escherichia coli as the immunogen. To express murine cyclin D3 protein in E. coli, the cyclin D3 cDNA fragment encoding c-terminal 236 amino acid residues obtained by polymerase chain reaction (PCR) was inserted into the NcoI/BamHI site of protein expression vector, pET 3d. Molecular mass of the cyclin D3 overexpressed in the presence of IPTG (Isopropyl $\beta$-D-thiogalactopyranoside) was approximately 26 kDa as calculated from the reading frame on the DNA sequence, and the protein was insoluble and mainly localized in the inclusion bodies that could be easily purified from the other cellular soluble proteins. When renaturation was performed following denaturation of the insoluble cyclin D3 protein in the inclusion bodies using guanidine hydrochloride, 4.4 mg of soluble form of cyclin D3 protein was produced from the transformant cultured in 100ml of LB media under the optimum conditions. Four-hundred micrograms of the soluble form of cyclin D3 protein was used for each immunization of a rabbit. When the antiserum obtained 2 weeks after tertiary immunization was applied to Western blot analysis, it was able to detect 33 kDa cyclin D3 protein in both murine lymphoma cell line BW5147.G.1.4 and human Jurkat T cells at 3,000-fold dilution with higher specificity to murine cyclin D3, demonstrating that the new rabbit polyclonal anti-murine cyclin D3 generated against c-terminal 236 amino acid residues more specifically recognizes murine cyclin D3 protein than does the commercially available rabbit polyclonal antibody raised against c-terminal 16 amino acids residues.

  • PDF

Galactooligosaccharide Synthesis by Active ${\beta}$-Galactosidase Inclusion Bodies-Containing Escherichia coli Cells

  • Lee, Sang-Eun;Seo, Hyeon-Beom;Kim, Hye-Ji;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1151-1158
    • /
    • 2011
  • In this study, a galactooligosaccharide (GOS) was synthesized using active ${\beta}$-galactosidase (${\beta}$-gal) inclusion bodies (IBs)-containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli ${\beta}$-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and $37^{\circ}C$, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that ${\beta}$-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli ${\beta}$-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. ${\beta}$-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.

Effect of Lead on Ultrastructure and Enzyme Activities in Mouse Liver and Kidney (납(Pb)이 생쥐 간과 신장의 미세구조 및 몇가지 효소 활성에 미치는 영향)

  • Lee, S.I.;Yoo, C.K.;Choe, R.S.
    • Applied Microscopy
    • /
    • v.15 no.1
    • /
    • pp.13-30
    • /
    • 1985
  • This study was undertaken to investigate the effect of lead on organisms. Mice received 15mg or 30mg of lead acetate per kg body weight every day for 1, 2 or 3 weeks, and the livers and kidneys were removed 24h after repeated injections. The livers and kidneys were used as sources for measurement of enzyme activities and for observation of alterations in ultrastructure. It was observed that body weights of mice treated with lead acetate were decreased when compared with those before treatment. This decrease in body weight was proportional to dose. The enzyme activities of succinate and malate dehydrogenases of experimental group that was treated with lead acetate for 1 week were nearly unchanged when compared with controls, but the enzyme activities of experimental group that was treated with lead acetate for 2 or 3 weeks were lower than those of controls. Changes in the enzyme activities were dependent on, but were not proportional to dose. Histologic examination of livers and kidneys after lead treatment showed that lead compound was accumulated and damaged in nucleus and mitochondria mainly. It was also observed that intranuclear inclusion bodies were formed only in epithelial cell of kidney proximal tubule after lead treatment. The overall changes in the ultrastructure were much greater in the livers than in the kidneys. From the above results, it nay be possible to conclude that the lead results in the decrease in body weight, reduction in the succinate dehydrogenate and malate dehydrogenase activities, and damages in the ultrastructure of kidney and liver in mouse. The presence of intranuclear inclusion bodies only in the kidney implies that these bodies protect the kidney from lead toxicity to some extent.

  • PDF

Fermentation and Purification of LacZ-Fused Single Chain Insulin Precursor for($B^{30}$-Homoserine) Human Insulin

  • SeungYup Lee;Jeo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.9-12
    • /
    • 1996
  • In order to produce the single chain precursor of a novel human insulin analogue, (B30-Homoserine) insulin, the fermentative behaviors of Escherichia coli JM103 were studied, which harbors pKBA plasmid carrying a hybrid gene in which the gene for a single chain precursor was fused with lacZ gene under tac promoter. The maximal induction of gene expression was achieved when more than 0.05 mM of isopropyl-$\beta$-D-thiogalactopyranoside(IPTG) was supplemented to fermentation medium after 4 h cultivation of E. coli, and followed by longer than 2-h fermentation. The hybrid protein of the single chain insulin precursor was isolated from cytoplasmic inclusion bodies by dissolving in 8M urea solution, and purified through DEAE-Sephacel and Sephadex G-200 column chromatographies with a recovery of 35%. The finally purified hybrid protein showed a single band on sodium dodecyl sulfate-polyacrylamide gel.

  • PDF

Improved Technologies to Produce Heterologous Proteins in Recombinant Escherichia coli. (재조합 대장균에서 외래단백질 발현을 위한 기술개발)

  • 박용철;권대혁;이대희;서진호
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Escherichia coli has been used as an expression work horse for foreign genes. This article summarized recent development in genetic engineering techniques for overproduction of medical proteins and industrial enzymes. Special emphasis was placed upon research activities concerning folding and refolding of inclusion bodies at genetic and fermentation levels. Plasmid and mRNA stabilization, development of strong inducible promoters, modification of translational elements and reduction of rpoteolytic degradation were carried out to elevate an expression level of a target protein. Optimization of culture conditions, improvement of denaturation and renaturation steps and coexpression of molecular chaperones or foldase were accomplished to produce active proteins in soluble form. Fusion protein systems with selective separation and surface display technology were also performed in an effort to make the E. coli expression system more effective and versatile.

  • PDF

Histopathological Studies on the Experimental Lead Poisoning in Rats (실험적 납중독 랫드의 조직병리학적 관찰)

  • 권오덕;신태균
    • Journal of Veterinary Clinics
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 2000
  • This study was undertaken to find out the effect of lead on histopathological changes in rat. Thirty female Wistar rats, 7 weeks old, were divided into a control and two experimental groups. The control was received normal diet. The two experimental groups were received diets contaminated artificially with 10 or 5,000 ug/g of lead administration group, histopathological changes were observed in the kidney, liver, heat, brain and lung from the 4th week of experiment. Desquamation of renal epithelia and inclusion bodies in the epithelia of renal tubules were demonstrated in the kidneys. But the liver did not show acid-fast inclusion body. Degeneration of cardiac muscles were seen. The number of mast cells were increased in the cardiac muscles. Darkly stained neurons in the cerebral cortex, some inflammatory cells around meningeal vessels and distended Virchow-Robin spaces were observed.

  • PDF