• Title/Summary/Keyword: inclined mechanical seal

Search Result 7, Processing Time 0.022 seconds

Numerical Study of Behaviour Characteristics of Mechanical Seals with Inclined Friction Faces (경사진 마찰접촉면을 갖는 기계경사면시일의 거동특성에 관한 수치적 연구)

  • Kim Chung Kyun
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2004
  • Thermal distortion of non-contacting mechanical seals with inclined rubbing surfaces is affected by friction heat between seal ring and seal seat. The circulation fluid along the inclined rubbing surfaces maintains cooling friction heat and lubrication between the sealing surfaces of mechanical seal with an inclined surface. Mechanical seals with inclined sealing surfaces may be useful for reducing the frictional heating and power loss because of the introduction of cooling fluids to the sealing gap between seal ring and seal seat. From the FEM computed result shows that the thermal behavior and von Mises stress of sealing faces with an inclined angle 60 are much reduced in comparison of the conventional mechanical face seal with rectangular sealing surfaces.

Analysis characters of distortion of inclined mechanical face seal (경사진 기계평면시일의 변형거동 특성 해석)

  • 조승현;고영배;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.341-349
    • /
    • 2001
  • Heat distortion of the non-contacting mechanical face seal is affected by friction heat between primary seal and seal sheet. The fluid or gas in mechanical face seal maintains operating gap, cooling friction heat and lubricates at the face of seal. So we designed face of seal for inclined face. inclined face of seal improves fluid or gas flow at the face of seal and it increases circumferential velocity at outer radius of the seal so temperature of the seal is decreased by low heat transfer coefficient at there. In this paper, inclined face seal are analysed numerically using finite element method for proof improve inclined face seal performance. Angle of the incline face used for FEA is from 50$^{\circ}$to 90$^{\circ}$and for explaining the effects of inclined face in seal, we get temperature, face distortion, and stress in the seal with variable operating gap and rotating speeds. Result of analysis shows that angle of the incline face is 60$^{\circ}$come to good thermal distortion characteristics.

  • PDF

Finite Element Analysis on the Thermal Behaviors of Non-Contact Type Mechanical Seals Depending on Contacting Face Geometry (접촉면 형상에 따른 비접촉식 기계시일의 열거동 특성에 관한 유한요소해석)

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • This paper presents the contact thermal behaviors of mechanical seals depending on the contacting face geometry. Using the finite element analysis, the temperature distribution, thermal distortion and leakage have been analyzed as functions of sealing gap and rotating speed of the seal ring shaft. The FE results indicate that the inclined contacting face may be more effective and stable based on the results of thermal characteristic analysis if the seal ring has been designed with a same thermal capacity between conventional rectangular sealing faces and inclined seating surface of seal rings.

A Study on the Contact Force of Rubber Seals for Ball Bearings (볼 베어링용 고무시일의 접촉력 해석에 관한 연구)

  • 김청균;전인기;최인혁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2261-2267
    • /
    • 1992
  • The equations are derived for the evaluation of the axial contact force. The contact forces for rubber seals are analyzed as a function of the ratio of real contact length, the thickness of seal lip, the inclined angle of seal lip, and the interference between the edge of seal lip and the rotating inner ring. The design data for rubber seals are presented in terms of the ratio of real contact length, initial inclined lip angle, lip thickness and the interference. The calculated results show that the deflected interference and the circumferential stress cause considerable change of contcat forces for the low sealed pressure.

A Study on Contact Characteristics by the Geometry Variation of Beam Seal Fitting of an Aircraft Fuel Hose (항공기용 연료호스의 빔 시일 피팅의 형상변화에 따른 접촉특성에 관한 연구)

  • Jeon, Jun-Young;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.101-108
    • /
    • 2013
  • An aircraft fuel hose is a kind of high pressure hose, and generally consists of a nipple, a socket, an inner tube, and a reinforcement layer to increase the tensile strength. Especially the nipple supports the other components in manufacturing stages such as the swaging or crimping processes however, the nipple also serves to prevent leakage in cases of hose engagement with a hydraulic system. To ensure the seal of the hose assembly, a beam seal fitting with metal-to-metal contact is usually adopted at the end of a nipple. Therefore, the geometry of the beam is an important parameter to be determined to make sure there is sufficient contact force. This study aims to investigate the effects of beam seal geometry on the contact force by changing the inclined angle and the thickness of the beam. The results reveal that the proper thickness and inclined angle of the beam seal are 0.45 mm and $8.5^{\circ}$, respectively.

Pressure Drop and Leakage Performances of Flat Seals with Inclined Grooves (경사 그루브를 갖는 평판 실의 압력 강하 및 누설 성능)

  • Jung, Jin Woo;Jeong, Gwon Jong;Hwang, Sung Ho;Kim, Tae Ho;Kim, Eojin
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.213-221
    • /
    • 2022
  • This paper presents performance measurements of pressure drop and leakage flow rate of test flat seals with asymmetric inclined grooves. This study aims to reveal the influence of groove shapes, often machined in radial film riding-face seals, in forming a hydrodynamic wedge on leakage performance. A test facility was developed, and test seals were manufactured to study the effects of the inlet pressure level, ratio of inlet to outlet pressure, seal groove length, and seal groove height on the steady-state pressure drop and leakage performance. A series of tests were conducted, and the test data were compared to the predictions from a simple and efficient mathematical model using a one-dimensional Reynolds equation. The test results revealed that an increase in the inlet pressure increased the pressure drop through the test seals. The leakage flow rate increased significantly as the inlet pressure and ratio of the inlet to outlet pressure increased. The groove shape also affects seal performance. An increase in the groove length and height resulted in an evident increase in the leakage flow rate. The simple model predictions underestimated the leakage flow rates but showed good agreement with the trend in the measurements for all test operating conditions and changes in the groove shape.

Development of Large Propulsion Motor Bearings Considering Slope Conditions (경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구)

  • Oh, Seung Tae;Choi, Jin Woo;Kang, Byeng Hi;Kim, Jin;Choi, Seong Pil;Bin, Jae Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.241-248
    • /
    • 2013
  • In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.