• 제목/요약/키워드: inclined impact

검색결과 62건 처리시간 0.026초

경사판 침전지에서 저류벽의 설치위치에 따른 수리학적 특성의 평가 (Evaluation of Hydraulic Characteristics Influenced by Different Deflector Baffles in the Sedimentation Basin with Inclined Plate Settler)

  • 유명진;김현철;류성호
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2005
  • Sedimentation is one of the most common and important units in conventional water treatment plant. Structure such as various baffle walls and inclined plate settler may be obstacles to the horizontal flow when it is poorly designed. Therefore, the effects of these structures on characteristics of hydraulic flow must be evaluated to improve the settling efficiency of the floc. The hydraulic characteristic of the two sedimentations at Y water treatment plant (YWTP), which have different deflector baffles inside the settling basin, were investigated by tracer (fluoride) test. The inclined plate settler installed inside settling basin caused an undesirable impact on horizontal flow and produced dead zone. Solid baffle wall under the plate settler could help to minimize the formation of density currents and flow short circuiting. NaF used as a tracer was recovered more than 90% at investigated all basins. Morill index ($t_{90}/t_{10}$), Modal index ($t_p/T-HRT$) and short-circuiting index ($[M-HRT-t_p]/M-HRT$) were determined from tracer test results performed at YWTP. Those indices ranged 2.95~3.02, 0.40~0.53 and 0.32~0.46, respectively.

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

경사판 침전지의 수리학적 특성에 대한 구조물의 영향 (Effects of Various Baffles on Hydraulic Characteristics in the Sedimentation Basin with Inclined Plate Settler)

  • 유명진;김현철;명규남;류성호;조항문
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.427-436
    • /
    • 2004
  • Sedimentation is one of the most common and important units in conventional water treatment plants. Structure such as various baffle walls and inclined plate settler may be obstacles to the horizontal flow when it is poorly designed. Therefore, the effects of these structures on characteristics of hydraulic flow must be evaluated to improve the settling efficiency of the floc. The hydraulic characteristic of the four sedimentations at the three real WTPs (water treatment plants), which have different structural properties respectively inside the settling basin, were investigated by tracer (fluoride) test. The inclined plate settler installed inside settling basin caused a undesirable impact on horizontal flow and produced dead zone. Intermediate baffle and solid baffle wall under the inclined plate settler at GE plant help to minimize the formation of density currents and flow short circuiting. However, installing perforated baffle under the inclined plate settler at other plants could not induce even distribution of flow. NaF used as a tracer was recovered more than 90% at investigated all basin. Morill index ($t_{90}/t_{10}$), Modal index ($t_p/T-HRT$) and short-circuiting index ($[M-HRT-t_p/M-HRT$) were determined from tracer test results performed at three WTPs. Those indices ranged 2.99~3.45, 0.44~0.72 and 0.23~0.47, respectively.

"Inclined Keel" 컨테이너선의 조파저항 최소화를 위한 선형최적화 (Minimization of Wave-making Resistance for "Inclined Keel" Containership)

  • 서광철;;김희정;전호환
    • 대한조선학회논문집
    • /
    • 제46권2호
    • /
    • pp.97-104
    • /
    • 2009
  • Ever increasing fuel prices, almost doubled in the last three years, and global pressure to reduce their environmental impact have been enforcing commercial vessel operators and designers to re-assess current vessel designs with emphasis on their propulsion systems and operational practices. In this paper the "Inclined Keel Hull (IKH)" concept, which facilitates to use larger propeller diameter in combination with lower shaft speed rates and hence better transport efficiency, is explored for a modern 3600 TEU container vessel with the aim of fitting an 13 % larger diameter propeller (and hence resulting 20% lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration. It appears that successful application of the "inclined keel Hull" concept is a fine balance amongst the maximum gain in propulsive efficiency, minimum increase in hull resistance and satisfaction of other naval architectural and operational requirements. In order to make the concept economically more viable, this paper concentrates on the fore body design with the possible combination of increase of volume in its fore body to recover the expected volume loss in the aft body due to the space for larger propeller and its low wave-making resistance to minimize the efficiency loss using a well-established optimization software.

준등방성 복합적층판의 저속충격에 의한 손상특성 (Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact)

  • 김재훈;전제춘
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰 (Instability of Plunging Breaking Wave Impact on Inclined Cylinder)

  • 홍기용;신승호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제10권4호
    • /
    • pp.187-192
    • /
    • 2007
  • 플런징 쇄파에 의해 실린더에 작용하는 충격력을 실험적으로 고찰하였다. 쇄파는 조파기의 구동주파수를 선형적으로 감소시켜 수조의 목표지점에 파랑을 집중시킴으로써 생성되며, 쇄파의 파형은 등파기울기 스펙트럼을 채택하였다. 실린더와 쇄파 전면의 접촉각이 충격력에 미치는 영향을 고찰하기 위해 3개의 경사각을 적용하였으며, 압력 분포 및 정점 값에 대한 실린더 직경의 영향을 살피기 위해 3개의 서로 다른 직경을 갖는 실린더가 사용되었다. 충격 압력의 최대 값을 찾기 위해 실린더를 수조 길이방향으로 조금씩 이동하며 총 8개 지점에서 실험을 수행하였다. 실린더 표면의 압력과 합력은 piezo-electric형 압력계와 3축 로드셀을 사용하여 30 kHz의 빈도로 계측하였다. 실린더 직경, 경사각 및 회전각에 따른 정점 충격압력과 충격력의 변화를 분석하였으며, 실린더 표면의 압력분포를 고찰하였다. 실린더의 수조 내 위치 및 실린더 표면의 위치는 정점압력의 크기와 시계열 형상을 지배하는 주요 인자이며, 반면에 실린더 직경과 경사각의 영향은 상대적으로 미미하다. 충격현상은 매우 불안정하기 때문에 동일조건의 반복 실험에서도 계측 값의 넓은 분포가 발생한다.

  • PDF

도어 임팩트 빔의 3점 굽힘 최대강도와 차량 장착 시 굽힘 좌굴강도와의 관계 (The Relation of Bending Buckling Strength in Vehicle and Three Point Bending Maximum Strength of Door Impact Beam)

  • 강성종;이상민
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.40-47
    • /
    • 2019
  • First, three point bending analysis for the inclined press door impact beam was carried out to investigate inclination angle effect on the maximum strength with varying support distance. Next, for the system model with spring elements representing body stiffness at door mounting area, the bending structural behavior of impact beam mounted on vehicle was estimated. The mounting distance and inclination angle were changed and the beam bending buckling strength was presumed at the head displacement below which spring stiffness change has little effect on the load. Finally strength ratio to predict the bending buckling strength of impact beam mounted on vehicle from three point bending maximum strength of fixed support distance was suggested.

봉파쇄기에 의해 제조된 재생굵은골재를 사용한 콘크리트의 공학적 특성 (Engineering Properties of Concrete Using Recycled Aggregate Manufactured by Bar-Crusher)

  • 백대현;한동엽;유명열;이건철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.83-86
    • /
    • 2006
  • This study investigates engineering properties of concrete using recycled coarse aggregated manufactured by bar-crusher. Test showed that Bar-crusher(S) had more effective results at fresh state than cone-crusher(C) and impact-crusher(I). In case of specimens manufactured by S, increase of spindle velocity, incorporating ratio of recycled aggregate and maximum size of aggregate inclined fluidity. As for the hardened concrete, compressive strength of specimens by C or I exhibited lower value than that of S. In addition, specimens using recycled aggregate manufactured by 400rpm and 500rpm of spindle velocity showed less than 10% reduction rate of strength, which is not significant reducing value. It is found that 500rpm of the spindle velocity had the best strength performance, while 600rpm was the worst. Strength value of specimens decreased as incorporating ratio of recycled aggregate inclined, but the strength value of most specimens exhibited less than 10% of reducing rate, assuming favorable result, only at less than 25% incorporating ratio of recycled aggregate.

  • PDF

기울어진 미세 텍스쳐 표면에 충돌하는 단일 액적의 퍼짐 특성 (Spreading Characteristics of a Liquid Droplet Impacting Upon the Inclined Micro-textured Surfaces)

  • 신동환;문주현;이성혁
    • 한국분무공학회지
    • /
    • 제16권2호
    • /
    • pp.104-109
    • /
    • 2011
  • The present study investigated experimentally the spreading characteristics of a single liquid impinging on the inclined micro-textured aluminum (Al 6061) surfaces manufactured by using a micro computerized numerical control (${\mu}$-CNC) milling machine. The textured surfaces were composed of patterned micro-holes (diameter of $125\;{\mu}m$ and depth of $125\;{\mu}m$). In our experiment, the de-ionized (DI) water droplet of $4.3\;{\mu}l$ was impinged normally on the non-textured and textured surfaces at two different Weber numbers, and the droplet impinged on the inclined surfaces with different angles. A high speed camera was used to capture sequential digital images for measurement of the maximum spreading distance. It was found that for the textured surface, the measured apparent equilibrium contact angle (ECA) increased up to $105.8^{\circ}$, higher than the measured ECA of $87.6^{\circ}$ for the non-textured (bare) surface. In addition, it is conjectured that the spreading distance decreased because of a liquid penetration during droplet spreading through the holes, the increase in hydrophobicity, and viscous dissipation during impact process.

Assessment of seismic retrofitting for soft-story buildings using gapped inclined brace system

  • Tohamy, Mohamed. A.;Elsayed, Mostafa. M.;Akl, Adel. Y.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.319-330
    • /
    • 2022
  • Retrofit of soft-story buildings due to seismic loads using Gap-Inclined-Brace (GIB) system is considered a new retrofit technique that aims to maintain both strength and stiffness of structure. In addition, it provides more ductility and less P-delta effect, and subsequently better performance is observed. In this paper, the effect of the eccentricity between GIB and the retrofitted column due to installation on the efficiency of the retrofitting system is studied. In addition, a modification in the determination method of GIB properties is introduced to reduce the eccentricity effect. Also, the effect of GIB system on the seismic response of mid-rise buildings with different heights considering soft-story at various heights has been studied. A numerical model is developed to study the impact of such system on the response of retrofitted soft-story buildings under the action of seismic loads. To achieve that goal, this model is used to perform a numerical investigation, by considering five case study scenarios represent several locations of soft-story of two mid-rise reinforced concrete buildings. At first, Non-linear static pushover analysis was carried out to develop the capacity curves for case studies. Then, Non-linear time history analyses using ten earthquake records with five peak ground accelerations is performed for each case study scenario before and after retrofitting with GIB. The results show that large GIB eccentricity reduce the ultimate lateral resistance and deformation capacity of the retrofitting system. Moreover, the higher the retrofitted building, the more deformation capacity is observed but without significant increase in ultimate lateral resistance.