• 제목/요약/키워드: incineration treatment

검색결과 160건 처리시간 0.033초

열 플라즈마를 이용한 뼈 폐기물 소각 기술 (Incineration Technology of Bone Waste Using Thermal Plasma)

  • 김우형;김봉수;한상원;기호범;채재우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.15-19
    • /
    • 2006
  • The meat consumption produces a lot of bone waste everyday. Dumping bone waste without treatment results into environmental hazards. Conventional treatment by pyrolysis is slow, inefficient and produces hazardous by-products. In the work, an investigation of bone waste incinerated using thermal plasma technology is presented. A high temperature arc plasma torch operated at 33 kW was employed for the experiments. Bone waste was incinerated to remove the infectious organic matter and to vitrify the inorganic matter using plasma torch. Bone waste was reduced its 2/3 weight after the treatment. The process was highly efficient, economical, convenient, and fuel free. This method could be used as an alternative method for disposal of bone waste, small infectious animals, hazardous hospital waste, etc.

  • PDF

효율적인 폐전동차 처리 및 재활용을 위한 기초 연구 (A Basic Study on the Treatment and Recycling of Disused Electric Motor Unit (EMU))

  • 박성환;이재영;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1250-1252
    • /
    • 2007
  • Recently, a large amount of waste has been occurred from electric motor units (EMUs) due to the excess of their duration or the exchange of interior. In Korea, most of waste has been treated by incineration or landfill because the special treatment system of disused EMUs has not been existed until now. The objective of this study is to investigate the international railroad cases for the efficient treatment of disused EMUs. Japanese railroad makes an effort to enhance the recycling efficiency of rolling stocks such as the use of recycling materials or the development of recycling technology. Also, Europe has decided to treat the disused rolling stocks considering the inspection of their conditions and the increase of management cost. Therefore, in the future, it will be necessary to improve the domestic regulations related to the duration of rolling stocks and to develop the recycling technology of interior preferentially.

  • PDF

Hydrothermal Pre-treatment and Gasification of Solid Wastes to Produce Electrical Power and Hydrogen

  • Yoshikawa, Kunio
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2006년도 고분자리싸이클링 심포지엄
    • /
    • pp.3-12
    • /
    • 2006
  • The main feature of these total technologies is that we can constitute the optimum treatment scheme fitting to the property of wastes, amount of wastes and energy requirement. For high moisture content wastes or biomass resources, high pressure steam process (MMCS) for crush, dry and deodorize wastes to produce high quality fertilizer of fuel is most appropriate. For dry or semi-dry solid wastes, the STAR-MEET system can be applied to produce low-BTU gases for power generation using duel fueled diesel engines of Stirling engines, and the REPRES and HyPR-MEET systems can be applied to produce hydrogen rich medium-BTU gas. For waste plastics and oils, liquefaction technology is best fit to produce light oil or kerosene equivalent fuel oils. These total technologies are completely different from the existent waste treatment technologies based on land-filling or incineration, and are expected to disseminate all over the world in the near future.

  • PDF

Nanowastes treatment in environmental media

  • Kim, Younghun
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.15.1-15.7
    • /
    • 2014
  • Objectives This paper tried to review a recent research trend for the environmental exposure of engineered nanomaterials (ENMs) and its removal efficiency in the nanowaste treatment plants. Methods The studies on the predicted environmental concentrations (PEC) of ENMs obtained by exposure modeling and treatment (or removal) efficiency in nanowaste treatment facilities, such as wastewater treatment plant (WTP) and waste incineration plant (WIP) were investigated. The studies on the landfill of nanowastes also were investigated. Results The Swiss Federal Laboratories for Materials Science and Technology group has led the way in developing methods for estimating ENM production and emissions. The PEC values are available for surface water, wastewater treatment plant effluents, biosolids, sediments, soils, and air. Based on the PEC modeling, the major routes for the environmental exposure of the ENMs were found as WTP effluents/sludge. The ENMs entered in the WTP were 90-99% removed and accumulated in the activated sludge and sludge cake. Additionally, the waste ash released from the WIP contain ENMs. Ultimately, landfills are the likely final destination of the disposed sludge or discarded ENMs products. Conclusions Although the removal efficiency of the ENMs using nanowaste treatment facilities is acceptable, the ENMs were accumulated on the sludge and then finally moved to the landfill. Therefore, the monitoring for the ENMs in the environment where the WTP effluent is discharged or biomass disposed is required to increase our knowledge on the fate and transport of the ENMs and to prevent the unintentional exposure (release) in the environment.

선박폐유처리 NCS 개발에 대한 연구 (A Study on NCS Development for the Treatment of Waste Oils from Ship)

  • 강버들;박종운
    • 수산해양교육연구
    • /
    • 제28권6호
    • /
    • pp.1772-1780
    • /
    • 2016
  • NCS development for the treatment of waste oils from ship was carried out through steps such as analysis on characteristics, development of competency standard, utilizing package, and validation of industry sites. The results were as follows. Firstly, duty competency was classified as levels from 2 to 6. Educational training institutions were followed by 75 graduate schools, 73 universities, 54 colleges, and 37 high schools. Secondly, developed standards were consisted of duty and competency unit. The name of duty was the treatment of waste oils from ship and competency units were consisted of 8 items as classification of waste oils from ship, pickup and transport of waste oils from ship, warehousing of waste oils from ship to marine disposal company, transport of waste oils from ship to land, warehousing of waste oils from to disposal company, determination of disposal method and plant recycling treatment, and incineration treatment. 28 competency unit elements below 8 competency units were developed. Thirdly, utilizing package was developed into 3 areas of life-long career path, training criteria, and guidelines for exam according to national competency standards in order to develop development of labor's career and perform personal management such as hiring and promotion in industry sites.

중화약품과 마이크로버블 장치를 이용한 폐수처리장 바이오가스 처리 (Biogas Treatment from Wastewater Treatment Plant by Micro-bubble Generation System with Neutralization Chemicals)

  • 정재억;정용준
    • 한국습지학회지
    • /
    • 제23권1호
    • /
    • pp.54-59
    • /
    • 2021
  • 폐수처리장에서 발생하는 바이오가스 중의 황화수소를 처리하기 위하여 습식스크러빙 장치가 적용되었다. 유입 H2S의 농도가 5,000mg/L이상에서 DIWS 장치에 물만을 사용할 경우 25%의 제거율을 나타내어 후속으로 소각처리 공정이 도입되어야만 98% 이상의 제거율을 나타냈다. 유입 H2S의 농도가 5,000mg/L일 때 CH4과 CO2는 각각 8.7%와 28.6% 감소하여 배출되었다. DIWS 장치에 중화약품으로 Na2CO3와 NaOH를 사용하였을 때 pH가 11.2~11.5를 유지하면서 H2S는 97.2% 제거되었다.

한국기계연구원의 열유체환경기술 개발현황 (R&D on Thermal, Fluid, and Environmental Engineering Technology in KIMM)

  • 김석준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.17-24
    • /
    • 2001
  • To solve the problems of energy and environment conservation issued recently, mainly in mechanical engineering point of view, R&D's on the thermal, fluid and environmental engineering technology have been carried out by two R&D departments in the Korea Institute of Machinery & Materials (KIMM). Now there are 65 researchers in the two. The representative projects in the field of thermal and fluid engineering are development of an inactive gas generator and development of a cryogenic cooler for electronic sensors. Pyrolysis and melting of wastes, gas treatment using nonthermal plasma, and desalination are important technology to be developed in environmental R&D areas. To reduce the emission from the existing diesel engines for buses, an LPG direct injection type of bus engine is being developed supported by LPG supply companies. These several R&D projects which have been carried out in KIMM are introduced briefly.

  • PDF

LCA를 통한 도시 고형 페기물의 환경부하평가 (Environmental Load Assessment of Municipal Solid Waste using LCA)

  • 박정한;;;이병인
    • 한국환경과학회지
    • /
    • 제12권6호
    • /
    • pp.643-650
    • /
    • 2003
  • We analyzed the amount of environmental loads, and the amount of energy consumption through life cycle assessment from a discharge stage to the ultimate disposal to municipal solid waste in Seoul. We carried out inventory analysis of the amount of environmental loads that made the object range collection, intermediate treatment, and the final treatment, and took into consideration each stage exceptions CO$_2$ and NOx , the amount of SOx discharge, and energy consumption. We applied the data of an object model, and acquisition processed the scale of an object model suitably and applied to it to difficult data using the data of the Yokohama City incineration plant in Japan. The amount of environmental loads per Iton of municipal waste were analyzed CO$_2$ 0.4C-ton, SOx 0.4kg and NOx 0.8kg. Moreover, the amount of energy consumption which is 2.4Gcal was computed.

젤리충전통신케이블의 구리회수를 위한 친환경적 분리기술평가 (Evaluation of Separation on the Copper Recovery from Jelly filled type Cable)

  • 민달기;성일화
    • 환경위생공학
    • /
    • 제18권3호통권49호
    • /
    • pp.21-26
    • /
    • 2003
  • The generation of waste cable has been continuously increased as a production of electrical and communication media are extended. The current recovery methods, such as mechanical peeling, incineration, solvent extraction and pyrolysis, seems inadequate because they are either hard to apply in some cases or environmentally unacceptable. It has been shown that copper can be effectively separated from the jelly filled type cables using a soybean oil treatment method. As a result, jelly compound is vanished from the wire by soybean oil bath and waste wires are separated copper and PE by the mechanical chipper. This is a more environmentally friendly method than burning, and considerably faster than Stripping.

VOC 처리를 위한 Biofilter 개발 원리 및 상업화 (Principle and Commercialization of Biofilter for Treatment of Volatile Organic Compounds)

  • 이은열;황재웅;강염석;문철연;박성훈
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2004년도 학술대회지
    • /
    • pp.85-106
    • /
    • 2004
  • Styrene as volatile organic compounds(VOC) has come under strict regulatory control as they cause serious health and environmental problems. Biofiltration offers a number of economical and environmental advantages over conventional technologies, such as incineration, catalytic adsorption, and chemical scrubbing. In this presentation, recent progresses on the development of lab-scale biofilter for the treatment of gas-phase styrene are reviewed, The potentials of commercialization of biofilter systems are also discussed.

  • PDF