• Title/Summary/Keyword: incineration facilities

Search Result 95, Processing Time 0.03 seconds

A Study on the Problems of Incinerating Facility and Plans to Improve in Regard to Separate Discharge of Food Waste (음식물류폐기물 분리배출에 따른 소각시설의 문제점과 개선방안에 관한 연구)

  • Kim, Seong-Jung;Kim, Dong-Hyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.74-81
    • /
    • 2008
  • Due to separate discharge of food waste, large incinerating facilities for municipal waste show the phase change that combustible contents have been increasing while the concentrations of water have been decreasing when wastes are brought in. This phase change of wastes leads to the increase of exothermic value when wastes are carried in, which causes the problems to make the durability of incinerating facilities weak and lower the capacities of them. In accordance with these problems, this study was carried out to present effective plans to operate incinerating facilities as the quantities of municipal wastes of Incheon have been gradually increasing. We examined the problems caused by the phase change of municipal waste in Incheon and managing plans to control the amounts of heat output when intermixed incineration of food waste is conducted. It is concluded that we could carry out the optimized operation of incinerating facilities as well as produce economic effect to reduce processing costs when we conduct the intermixed incineration of food waste and municipal waste, in the trend that the amounts of heat output generated by wastes are gradually increasing. This is because this operation of intermixing incineration contributes to reducing the amount of exothermic heat.

  • PDF

Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013) (폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013))

  • Choi, Won-Geun;Seo, Ran-Sug;Park, Seung-Chul
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

Systematic investigation of heavy metals from MSWI fly ash and bottom ash samples

  • Ramakrishna., CH;Thriveni., T;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.35-44
    • /
    • 2017
  • Disposal of municipal solid waste has become a major problem in many countries around the world. As landfill space for the disposal of ash from Municipal Solid Waste Incineration (MSWI) becomes scarce, numerous reports and researches address the various environmental issues about the municipal solid waste incineration waste management and other particulate matters with the range of 10 ~ 2.5. Although in many developing and industrialization countries landfill with the disposal of municipal solid waste, open incineration has become a common practice. Large municipal waste incinerators are major industrial facilities and have the potential to be significant sources of environmental pollution. Despite the significant volume reduction from incineration, waste recycling is important to ensuring the future welfare of mankind. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. In this paper, we reported the studies on physical and chemical characteristics of municipal solid waste incineration (MSWI) fly ash and bottom ash containing particulate matter whose particulate sizes are lower than $PM_{10}$, $PM_{2.5}$ and heavy metal were investigated.

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

A Study on the Construction of Waste Incineration Facility by Pyrolysis Type in Iksan City (익산시의 열분해방식 폐기물 소각시설 건설에 관한 연구)

  • 육찬남
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.60-66
    • /
    • 2002
  • Iksan city is planning to construct a waste incinerator on the site of about $110,000\textrm{m}^2$ in size that will be selected from a public bid(Oct.~Nov.2002)in the wake of expiration by June 2003 of use for Hamyeol fill-up ground. Science it has usually been difficult to find sites for filling-up or incinerating facilities owing to NIMBY phenomenon, it is badly requested to employ up-to-date technology for processing wastes without environmental pollution. The conflicts between the administrative authorities and community people with regard to construction of incineration facilities, fill-up ground and facilities for waste processing or recycling are not the matters of just today but are increasingly deepening and spreading countrywide. There seems to be no prospect for these conflicts to be amicably settled through dialogues. They rather become a social disease inflicting the whole country like an epidemic. It is therefore believed to be necessary to introduce measures to design and build environment-friendly facilities that may be accepted by residents as not abominable ones but be used as amusing place while they watch the daily operation of them as watchdogs. Iksan city's plan to construct environment-friendly waste incineration facilities of pyrolysis type without chimney has undergone the process of public hearings and explanatory gatherings from every class of Iksan citizens to get consensus but is still delayed due mainly to be the failure of inducing foreign investments. Pyrolysis technology has two advantages ; first, environment-friendly due to less emission of second pollutants ; second, production of by-products highly valuable as resources. It Is known that Germany has recently begun installation and operation of pyrolysis facility urban wastes, an evidence indicating that pyrolysis method will be widely applied to cope with the tightened regulation to preserve environment worldwide.

A Study on the Effectiveness of Continuous CO2 Emission Monitoring in a Waste Incinerator (폐기물 소각시설의 이산화탄소 (CO2) 연속측정 실효성에 관한 연구)

  • Oh, Seung Hwan;Kang, Lim Suk;Jung, Dong Hee
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.273-281
    • /
    • 2018
  • The purpose of this study is to consider the effectiveness of continuous $CO_2$ emission monitoring in waste incinerator. To prevent global warming, many countries are trying to reduce $CO_2$, the main greenhouse gas. Currently, Korea is implementing an emission trading scheme to reduce $CO_2$, and waste incinerators are included in this scheme as major $CO_2$ sources. However, when using waste incinerators, $CO_2$ is discharged during incineration of various types of wastes, therefore it is very difficult to calculate the amount of emissions according to IPCC guidelines. In addition, the estimation of $CO_2$ emissions by calculation is known to lack of accuracy comparing with actual emissions. Currently, Korea is operating CleanSYS, which enables continuous measurement of gases emitted into the atmosphere. Therefore, it is possible to estimate the $CO_2$ emissions of waste incineration facilities. The IPCC, which published $CO_2$ emission calculation guidelines, recognizes that direct measurement of emission is a more advanced method in cases of various $CO_2$ emission sources such as a waste incineration facility. Also, Korean emission trading scheme guidelines allow estimation of $CO_2$ emissions by continuous measurement at waste incineration facilities. Therefore, this study considers the effectiveness of a direct measurement method by comparing the results of CleanSYS with the calculation method suggested by the IPCC guidelines.

Estimation of Energy Recovery Rate of Municipal Waste Incineration Facilities through Measuring Instruments (계측기기 측정을 통한 생활폐기물 소각시설의 에너지 회수효율 산정 연구)

  • Kwon, Young-Hyun;Kang, Jun-Gu;Ko, Young-Jae;Yoo, Ha-Nyoung;Kwon, Jun-Hwa;Park, Ho-Yeun;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.770-776
    • /
    • 2018
  • This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.

Method recycling of incineration materials in household waste (생활폐기물 소각시설 소각재의 재활용 활성화 방안)

  • Kim, Sukhwan;Shin, Dong Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.153-155
    • /
    • 2021
  • A large amount of combustible household waste are incinerated on a large scale. Incineration ashes including flooring and scattering materials are generated in the incineration facilities. The incineration materials (flooring and scattering) are generated 16.5% of the total amount ashes brought into the incinerator. The amount of incineration materials decrease the landfill period of existing landfills and increase the needs for the construction of new landfills. This study introduces technical and institutional suggestions to solve increasing incineration ash problem by recycling them. As a technical recycling method, incineration materials can be recycled by producing earthwork materials and concrete products. In addition, the government and local governments will be able to promote recycling by improving related laws such as the Waste Management Act and by preparing active institutional support measures such as incentives for recycling companies for Green New Deal strategies.

  • PDF

Citizen's Attitude to Environmental Facilities (환경기초시설에 대한 시민 의식 조사)

  • Chung, Jae-Chun;Chung, Won-Tae;Tak, Seung-Je;Kang, Hun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.97-102
    • /
    • 1995
  • A questionare survey was performed to investigate the citizen's attitude concerning waste treatment facilities. Most people recognized the seriousness of the waste treatment problem and think that more composting facilities should be built. People dislike most the landfill facility, followed by the nightsoil treatment facility, the incineration facility and the composting facility. Most people answered that the disirable distance from their house to the treatment facility should be farther than 4km for the landfill facility, farther than 2km for incineration and composting facilities and farther than 1km for the wastewater treatment plant. Most people want moving cost+land price+inconvience suffering cost (amount equal to the land prize+building prize) for their retrieval. About 30% of people answered that they will not accept any waste treatment facility even though it is perfect.

  • PDF