• Title/Summary/Keyword: incineration bottom ash

Search Result 36, Processing Time 0.021 seconds

Development of Metal Recovery Process for Municipal Incineration Bottom Ash (MIBA)

  • Kuroki, Ryota;Ohya, Hitoshi;Ishida, Kazumasa;Yamazaki, Kenichi
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.21-25
    • /
    • 2019
  • The utilization of incineration ash from municipal waste must be promoted to solve the social problem on the shortage of final disposal site. In this research, metals should be recovered to avoid the damage of the crushing machine during the utilization of incineration ash in cement industry. In fact, incineration bottom ash from municipal waste contains iron in 3-5%. Nonferrous metal and stainless steel in 1% is also included. The research and development on the physical recovery process was performed not only to remove the metals but also to recover high grade products. Metals were separated from incineration ash in Maruya Co. Ltd.. In fact, iron scrap recovered by magnetic separation can be selled. After that, mixed metal was separated from incineration ash using screen. In this research, mixed metal tried to divided copper, aluminum, brass and stainless steel using drum type magnetic separation, eddy current separation and high magnetic separation. As a result, recovered iron had an 80% for the grade. Aluminum was recovered by eddy current separation without copper and brass.

Mechanical Characteristics of Municipal Waste Incineration Bottom Ashes (생활폐기물 소각 바닥재의 역학적 특성)

  • Oh, Myounghak;Lee, Jeonghyeop;Park, Haeyong;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.21-27
    • /
    • 2015
  • Due to the population growth and development of industry, waste from household and industries has increased. As the advanced countries experienced these problems, they have already started research on recycling methods of waste incineration ashes. Domestic recycling rate of incineration ash became up to 80 percent as high as the level of developed countries, but the recycling was limited to fly ash for admixture in concrete. In case of bottom ash, most of bottom ash was reclaimed in the landfills. Therefore, basic physical property and mechanical experiments for bottom ash were conducted in this study to evaluate the possibility of incineration bottom ash as an alternative construction materials. Bottom ashes from three different landfills with two different incineration methods were tested. Incineration methods are Stoker type Incinerator and Pyrolysis-Melting Treatment. Bottom ash can be used as an alternative granular material for construction based on the basic physical property and mechanical characteristics similar to those of sandy materials. However, the incineration method should be considered since it can affect the material and mechanical characteristics of the incineration bottom ash.

Removal of Cl from the Incineration Ash of Domestic Municipal Solid Waste

  • Han, Gi-Chun;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.628-632
    • /
    • 2001
  • The removal rate of Cl from municipal solid waste incineration(MSWI) ash(bottom ash and fly ash) by washing was investigated. The Cl contents in the bottom ash and fly ash were 2.6-3.0% and 25-30% respectively, and KCl, NaCl, CaCIOH and friedel's salt were main components. From the results on the effects of washing time and temperature, the Cl contents in the bottom ash and fly ash were decreased up to 0.3% and 2.0% respectively by using of water as a solvent within 30 min at 2$0^{\circ}C$, 300 rpm of agitation speed and 10 of liquid/solid ratio. It is expected that the removal of Cl from the incineration ash by washing could make use of the ash for a cement raw material and so on.

  • PDF

A Study about Recycling from Municipal Solid Waste Incineration Bottom Ash (생활폐기물(生活廢棄物) 소각(燒却)바닥재의 재활용(再活用)을 위한 연구(硏究))

  • Ahn, Ji-Whan;Oh, Myung-Hwan;Han, Choon
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.3-11
    • /
    • 2008
  • The treatment of domestic municipal solid waste has inclined to incineration process instead of disposal in landfills. So, the amount of ash generated by incineration of municipal solid waste is gradually increased. The incineration ash divides into bottom ash and fly ash. The bottom ash which accounts for about 90% of the incineration ash consists of ceramics, glasses and metals. And it can be used as the recycling product by the stabilization process. For example, the bottom ash is used as secondary building material or for other similar purposes such as road sub-bases and noise barrier in USA, Europe and Japan. But, the stabilization-treatment technique of bottom ash sti11leaves much to be desired in Korea. Thus, the domestic study of recycling about bottom ash must be improved through investigation about the chemical property and technique of stabilization.

A Study on Behavior of Heavy Metals during Waste Incineration (폐기물 소각시 중금속 성분의 거동에 관한 연구)

  • 박용이;허철구
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.785-799
    • /
    • 1996
  • The incineration tests of mixed industrial wastes using the stoker type incinerator are carried out to investigate the partitioning characteristics of heavy metals during incineration. The results obtained from this study are as follow. The partitioning characteristics of heavy metals throughout this incinerator are found that, at given condition of $700^{\circ}C$, the elements with the relatively high boiling point such as Cr, Cu and Pb are partitioned into a bottom ash, a fry ash captured tv cyclone, and a flue gas stream, 67~88%, 2~19% and 6~16% of initial amount entering the incinerator, respectively, but the Cd and Hg of 75~81% is vaporized into the flue gas. It appears that the partitioning characteristics according to the particle size of ash is different between the bottom ash and the fly ash. For bottom ash, the fraction of partitioning into 75${\mu}{\textrm}{m}$ oversized particles is reatively high. For fly ash, the characteristics of distributions with the particle size can not be clearly shown.

  • PDF

Systematic investigation of heavy metals from MSWI fly ash and bottom ash samples

  • Ramakrishna., CH;Thriveni., T;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.35-44
    • /
    • 2017
  • Disposal of municipal solid waste has become a major problem in many countries around the world. As landfill space for the disposal of ash from Municipal Solid Waste Incineration (MSWI) becomes scarce, numerous reports and researches address the various environmental issues about the municipal solid waste incineration waste management and other particulate matters with the range of 10 ~ 2.5. Although in many developing and industrialization countries landfill with the disposal of municipal solid waste, open incineration has become a common practice. Large municipal waste incinerators are major industrial facilities and have the potential to be significant sources of environmental pollution. Despite the significant volume reduction from incineration, waste recycling is important to ensuring the future welfare of mankind. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. In this paper, we reported the studies on physical and chemical characteristics of municipal solid waste incineration (MSWI) fly ash and bottom ash containing particulate matter whose particulate sizes are lower than $PM_{10}$, $PM_{2.5}$ and heavy metal were investigated.

A Pilot Study on Emissions of Air Pollutants Produced from Incineration of Some Municipal Solid Wastes

  • Kim, Haen-Gah;Lee, Byeong-Kyu;Cho, Jung-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.49-56
    • /
    • 2006
  • This pilot study focuses on emissions characterization of air pollutants produced from incineration of some municipal solid wastes (MSWs). The MSWs incinerated by an electric furnace maintained up to $600^{\circ}C$ included food, paper, and plastic wastes. The pollutants analyzed in this study included concentrations of volatile organic compounds (VOCs), bottom ash contents, and heavy metals extracted from the bottom ash of each waste. The VOCs identified were classified based on their chemical structure. The total emissions of VOCs produced from incineration of the papers were identified as the highest followed by those from the plastics and the food wastes. Aliphatic alkenes were major VOC compounds produced from incineration of plastic or food wastes, while furans were major VOCs produced from incineration of papers. The second major VOCs produced from incineration of food, plastics, and papers were aromatics. In particular, hazardous air pollutants such as benzene were produced with considerable amount of emission concentration. The bottom ash contents of papers were usually much higher than those of food or plastic wastes. The bottom ash contents produced from incineration of food and plastics were much lower than those of other MSWs. In analysis of heavy metals extracted by an ultrasonic method from the bottom ashes of the papers, high concentrations of heavy metals were identified from incineration of newspapers and box (cardboard). In addition, it was identified that the general public might be exposed to considerable amounts of lead concentrations during incineration processes and uses of paper cup and from ashes.

A Study on Characteristics of Water Quality in Wastewater according to the Washing of Municipal Solid Waste Incinerator (MSWI) Ash

  • Byun, Mi-Young;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.296-300
    • /
    • 2001
  • In order to recycle the incineration ash (bottom ash and fly ash) generated from the incineration of municipal waste for a cement material, salts as well as heavy metal should be removed by the stabilization treatment. Most of these heavy metal and over 80% of salts are removed by a washing as a pre-treatment. However, wastewater which is another pollutant is generated by a washing, then proper treatment should be developed. First the characteristics of incineration ashes collected from two domestic full-sized incinerators were investigated and removal rate of salts and heavy metals from them also studied. The wastewater quality was compared to the criteria of the regulation by analyzing the characteristics of generated wastewater during the washing of incineration ash as a condition of liquid/solid ratio. Also, we tried to used this experimental results for the basic data to develop proper processing technique of municipal waste.

  • PDF

Optimal Use of MSWI Bottom Ash in Concrete

  • Zhang, Tao;Zhao, Zengzeng
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • An experimental investigation was carried out to evaluate the mechanical properties of concrete mixtures in which coarse aggregate was partially (30, 50 or 70 %) replaced with pre-washed municipal solid waste incineration (MSWI) bottom ash. Results indicated that bottom ash reduced the compressive strength, elastic modulus, and levels of heavy metals in leachate when used as a replacement for gravel, and that the maximum amount of MSWI bottom ash in concrete should not exceed 50 %. To analyze the effect mechanism of bottom ash in concrete, the degree of hydration and the following pozzolanic reaction characterized by the pozzolanic activity index, and the porosity distribution in cement mortar. The study indicates that improved properties of concrete are not solely later strength gain and reduced levels of heavy metals in leachate but also the progression of pozzolanic reactions, where a dense structure contains a higher proportion of fine pores that are related to durability.

Study on the heavy metal stabilization by dosing of chelate on the bottom ash (소각재에서의 용출억제제를 이용한 중금속 안정화에 관한 연구)

  • Jang, Hyeon-Jong;Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.81-90
    • /
    • 2009
  • About 35 domestic incinerators are being operated currently. There is waste management policy to reuse waste efficiently and reduce waste through incineration which include reuse, recycling and energy recovery. However, there is a critical social issue that some heavy metals(Cu, Pb) were found in bottom ash from incineration of waste. After incineration, bottom ash is treated with chemicals to prevent second pollution of heavy metals from bottom ash and increase efficiency of heavy metal stabilization.