• Title/Summary/Keyword: inaccuracy

Search Result 452, Processing Time 0.019 seconds

Processing and Quality Control of Flux Data at Gwangneung Forest (광릉 산림의 플럭스 자료 처리와 품질 관리)

  • Lim, Hee-Jeong;Lee, Young-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • In order to ensure a standardized data analysis of the eddy covariance measurements, Hong and Kim's quality control program has been updated and used to process eddy covariance data measured at two levels on the main flux tower at Gwangneung site from January to May in 2005. The updated program was allowed to remove outliers automatically for $CO_2$ and latent heat fluxes. The flag system consists of four quality groups(G, D, B and M). During the study period, the missing data were about 25% of the total records. About 60% of the good quality data were obtained after the quality control. The number of record in G group was larger at 40m than at 20m. It is due that the level of 20m was within the roughness sublayer where the presence of the canopy influences directly on the character of the turbulence. About 60% of the bad data were due to low wind speed. Energy balance closure at this site was about 40% during the study period. Large imbalance is attributed partly to the combined effects of the neglected heat storage terms, inaccuracy of ground heat flux and advection due to local wind system near the surface. The analysis of wind direction indicates that the frequent occurrence of positive momentum flux was closely associated with mountain valley wind system at this site. The negative $CO_2$ flux at night was examined in terms of averaging time. The results show that when averaging time is larger than 10min, the magnitude of calculated $CO_2$ fluxes increases rapidly, suggesting that the 30min $CO_2$ flux is influenced severely by the mesoscale motion or nonstationarity. A proper choice of averaging time needs to be considered to get accurate turbulent fluxes during nighttime.

Evaluation of the usefulness of Bolus, which combines Step Bolus and 3D Bolus (Step Bolus와 3D Bolus를 combine 한 Bolus의 유용성 평가)

  • Lee, Chang-Suk;Chae, Moon-Ki;Park, Byung-Suk;Kim, Sung-Jin;Joo, Kyoo-Sang;Park, Chul-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.79-88
    • /
    • 2021
  • Objectives: Bolus, which combines 3D-bolus and Step-bolus, was produced and its usefulness is evaluated. Materials and Methods: A Bolus was manufactured with a thickness of 10mm and 5mm using a 3D printer (3D printer, USA), and a Step Bolus of 5mm was bonded to a 5mm thick bolus. In order to understand the characteristics of Step bolus and 3D bolus, the differences in relative electron density, HU value, and mass density of the two bolus were investigated. These two Bolus were applied to anthropomorpic phantom to confirm its effectiveness. After all contouring of the phantom, a treatment plan was established using the computed treatment planning system (Eclipse 16.1, Varian medical system, USA). Treatment plan was performed using electron beam 6MeV, nine dose measurement points were designated on the phantom chest, air-gap was measured at that point, and dose evaluation was performed at the same point for each bolus applied using a glass dosimeter (PLD). Results: Bolus, which combines 3D-bolus 5mm and Step-bolus 5mm, was manufactured and evaluated compared with 3D-bolus 1cm. The relative electron density of 3D Bolus was 1.0559 g/cm2 and the step Bolus was 1.0590 g/cm2, which was different by 0.01%, so the relative electron density was almost the same. In the lightweight measurement of air-gap, the combined bolus was reduced to 54.32% for all designated points compared to 3D-bolus. In the dose measurement using a glass dose meter (PLD), the consistency was high in phantom using combined bolus at most points except the slope point. Conclusion: Combined bolus made by combining 3D-bolus and Step-bolus has all the advantages of 3D-bolus and Step-bolus. In addition, by dose inaccuracy due to Air-gap, more improved dose distribution can be shown, and effective radiation therapy can be performed.