• Title/Summary/Keyword: in-vehicle time

Search Result 4,228, Processing Time 0.037 seconds

Intelligent Vehicle Management Using Location-Based Control with Dispatching and Geographic Information

  • Kim Dong-Ho;Kim Jin-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.249-252
    • /
    • 2004
  • The automatic determination of vehicle operation status as well as continuous tracking of vehicle location with intelligent management is one of major elements to achieve the goals. Especially, vehicle operation status can only be analyzed in terms of expert experiences with real-time location data with scheduling information. However the scheduling information of individual vehicle is very difficult to be interpreted immediately because there are hundreds of thousand vehicles are run at the same time in the national wide range workplace. In this paper, we propose the location-based knowledge management system(LKMs) using the active trajectory analysis method with routing and scheduling information to cope with the problems. This system uses an inference technology with dispatching and geographic information to generate the logistics knowledge that can be furnished to the manager in the central vehicle monitoring and controlling center.

  • PDF

A Study on the Development of AVCS(Airside Vehicle Control System) in Gimpo Airport Based on RTK-GPS (RTK-GPS 기반의 김포공항 이동지역 차량통제 시스템 개발방안 연구)

  • Sanghoon Cha;Minguan Kim;Jeongil Choi
    • Journal of Information Technology Services
    • /
    • v.22 no.3
    • /
    • pp.85-100
    • /
    • 2023
  • The development of Airside Vehicle Control System(AVCS) at Gimpo Airport aims to reduce ground safety accidents in movement area and improve airport operation efficiency and safety management service quality. The vehicle is controlled by a brake controller RTK-antenna and On-Board Diagonostics(OBD) module. Location data is transmitted to a nearby communication base station through a Wi-Fi router and the base station is connected to the AVCS by an optical cable to transmit location data from each vehicle. The vehicle position is precisely corrected to display information using the system. The system allows airport operators to view registered information on aircraft and vehicles and monitor their locations speeds and directions in real time. When a vehicle approaches a dangerous area alarm warnings and remote brake control are possible to prevent accidents caused by carelessness of the driver in advance.

A Study of Vehicle Operation Policy in Warehouse (창고에서의 이송장비 운영정책에 관한 연구)

  • Lee, Hue-On;Chae, Jun-Jae;Lee, Moon-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Controlling industrial vehicle operated by human in warehouse was not simple since the information transfer for controlling the vehicle was not easy. However, as the technology for the WMS (Warehouse Management System) has been advanced and the PDA (Personal Digital Assistant) has come into wide use in a workplace, the control of man-operated vehicle became less difficult as do to AGVS (Automated Guided Vehicle System). This study examines the ways to improve the efficiency of warehouse operation through introducing rule of task assignment for the vehicles, particularly forklift. This study, basically, refer to AGV operation policy because a great number of studies for AGV dispatching rule have been done and the mechanism for the controlling vehicles is very similar. The workers in field prefer to simple dispatching rules such as Shortest Retrieval Time First (SRTF), Shortest Travel Time First (STTF), and Longest Waiting Time First (LWTF). However, these rules have potential disadvantage. Thus, several rules made up by combining rules mentioned above are introduced and these new rules use threshold value or evaluation formula. The effectiveness of these new rules are tested by simulation and the results are compared. This study proposes favorable dispatching rules for forklift in warehouse for the efficiency of the vehicle operation and stability of service level.

A Branch-and-price Algorithm for the Vehicle Routing Problem with Time Dependent Travel Times (이동시간의 변화를 고려한 차량경로 문제의 분지평가법을 이용한 최적화 해법)

  • Lee, Yong-Sik;Lee, Chung-Mok;Park, Sung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • Most of the models for the vehicle routing problems studied in the literature assumed constant travel times. However, those approaches may give infeasible solutions when traffic congestion causes delays in travel time. To overcome such difficulty, there have been some researches considering the change of the travel time which is called the time dependent vehicle routing problem (TDVRP). TDVRP assumes that the travel time between two locations is not only affected by the distance traveled, but by many other factors including the time of the day. In this paper, we propose a branch-and-price algorithm to solve the TDVRP. The time dependent property of the travel time is dealt with an enumeration scheme with bounding procedures in the column generation procedure identifying a profitable route. The proposed algorithm guarantees the "Non-passing" property to be held in the solutions. The algorithm was tested on problems composed of the Solomon's benchmark instances for 25 and 50 nodes. Computational results are reported.

Development of A Haptic Steering System for a Low Cost Vehicle Simulator using Proving Ground Test Data (주행 시험 데이터를 이용한 저가형 차량시물레이터의 조향감 재현 장치 구현)

  • Kim, Sung-Soo;Jeong, Sang-Yoon;Lee, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2005
  • A haptic steering system which reflects steering reaction torque has been developed for a fixed base vehicle simulator. The haptic steering system consists of a steering effort sensor, MR-clutch, AC servo motor and controller. In order to generate realistic steering torque feel to driver and at the same time to meet real-time simulation requirement, 3D torque map is constructed by experimental data and torque generation algorithm using the torque map has been also developed. 3D torque map is constructed using curve fitting and interpolation of the measured values of the steering angle, velocity and steering torque from actual slalom test on the proving ground. In order to carry out performance test of the developed haptic steering system, a fixed based vehicle simulator is constructed by integrating real time vehicle dynamics module, VR-video/audio module, and the haptic steering system. Steering torque and steering angle curves have been obtained from virtual testing in the vehicle simulator and performance of the haptic steering system has been evaluated.

$H_\infty$ and Time-Varying Sliding Mode Control of Underwater Vehicle (수중운동체의 $H_\infty$및 시변슬라이딩모드 제어)

  • 박철재;이만형;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.540-545
    • /
    • 1993
  • When modeling an underwater vehicle uncertainty arises in the presence of unsteady flow. It is difficult to include the uncertainty in the model and is therefore desirable to investigate robust controller design methods for the underwater vehicle. In the paper two robust control methods are applied for the underwater system. One is standard H$_{\infty}$ control and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for H$_{\infty}$ control and design parameters for time-varying switching surfaces are provided. Simulations and comparison are carried out.t.

  • PDF

A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS (안내궤도 차량 부품의 피로 수명 예측에 관한 연구)

  • Lee, Soo-Ho;Park, Tae-Won;Yoon, Ji-Won;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Joong-kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

Real-time Dangerous Driving Behavior Analysis Utilizing the Digital Tachograph and Smartphone

  • Kang, Joon-Gyu;Kim, Yoo-Won;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we propose the assistance method to enable safe driving through analysis of dangerous driving behavior using real-time alarm by vehicle speed, azimuth data and smartphone. For this method, smartphone is receiving driving data from digital tachograph using communication. Safe driving habit is a very important issue to commercial vehicle because that driver's long time driving than other vehicle type driver. Existing methods are very inefficient to improve immediately dangerous driving habits during driving because proceed driving behavior analysis after the vehicle operation. We propose the new safe driving assistance method that can prevent traffic accidents by real-time and improve the driver's wrong driving habits through real-time dangerous driving behavior analysis and notification the result to the driver. We have confirmed that the method in this paper will help to improve driving habits and can be applied through the proposed method implementation and simulation experiment.

A 3-D Genetic Algorithm for Finding the Number of Vehicles in VRPTW

  • Paik, Si-Hyun;Ko, Young-Min;Kim, Nae-Heon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.37-44
    • /
    • 1999
  • The problem to be studied here is the minimization of the total travel distance and the number of vehicles used for delivering goods to customers. Vehicle routes must also satisfy a variety of constraints such as fixed vehicle capacity, allowed operating time. Genetic algorithm to solve the VRPTW with heterogeneous fleet is presented. The chromosome of the proposed GA in this study has the 3-dimension. We propose GA that has the cubic-chromosome for VRPTW with heterogeneous fleet. The newly suggested ‘Cubic-GA (or 3-D GA)’ in this paper means the 2-D GA with GLS(Genetic Local Search) algorithms and is quite flexible. To evaluate the performance of the algorithm, we apply it to the Solomon's VRPTW instances. It produces a set of good routes and the reasonable number of vehicles.

  • PDF

Simulation of Vehicle-Track-Bridge Dynamic Interaction by Nonlinear Hertzian Contact Spring and Displacement Constraint Equations (비선형 헤르쯔 접촉스프링과 변위제한조건식의 적용에 의한 차량-궤도-교량 동적상호작용 수치해석기법)

  • Chung Keun-Young;Lee Sung-Uk;Min Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.191-196
    • /
    • 2005
  • In this study, to describe vehicle-track-bridge dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are introduced. In this approach external loads acting on 1/4 vehicle model are self weight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by Penalty method. Also, to improve the numerical stability and to maintain accuracy of solution, the artificial damper and the reaction from constraint violation are introduced. A nonlinear time integration method, in this study, Newmark method is adopted for both equations of vehicles and structure. And to reduce the error caused by inadequate time step size, adaptive time-stepping technique is partially introduced. As the nonlinear Hertzian contact spring has no resistance to tensile force, the bouncing phenomena of wheelset can be described. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems.

  • PDF