• Title/Summary/Keyword: in-vehicle network system

Search Result 787, Processing Time 0.03 seconds

Construction of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model (회귀모형과 신경망모형을 이용한 차량공조시스템의 음질 인덱스 구축)

  • Park, Sang-Gil;Lee, Hae-Jin;Sim, Hyun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1443-1448
    • /
    • 2006
  • The reduction of the vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception in the way of making a diver become nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality evaluation with acquiring noises caused by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation 'Pleasant' using the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Furthermore, the neural network model were obtained using three inputs(loudness, sharpness and roughness) of the sound quality metrics and one output(subjective 'Pleasant'). And then the models were compared with correlations between sound quality index outputs and hearing test results for 'Pleasant'. As a result of application of the sound quality index, the neural network was verified with the largest correlation of the sound quality index.

  • PDF

Efficient Driver Attention Monitoring Using Pre-Trained Deep Convolution Neural Network Models

  • Kim, JongBae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • Recently, due to the development of related technologies for autonomous vehicles, driving work is changing more safely. However, the development of support technologies for level 5 full autonomous driving is still insufficient. That is, even in the case of an autonomous vehicle, the driver needs to drive through forward attention while driving. In this paper, we propose a method to monitor driving tasks by recognizing driver behavior. The proposed method uses pre-trained deep convolutional neural network models to recognize whether the driver's face or body has unnecessary movement. The use of pre-trained Deep Convolitional Neural Network (DCNN) models enables high accuracy in relatively short time, and has the advantage of overcoming limitations in collecting a small number of driver behavior learning data. The proposed method can be applied to an intelligent vehicle safety driving support system, such as driver drowsy driving detection and abnormal driving detection.

OVERVIEW OF TELEMATICS: A SYSTEM ARCHITECTURE APPROACH

  • Cho, K.Y.;Bae, C.H.;Chu, Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.509-517
    • /
    • 2006
  • In the mid 1990s, the combination of vehicles and communication was expected to bolster the stagnant car industry by offering a flood of new revenues. In-vehicle computing systems provide safety and control systems needed to operate the vehicle as well as infotainment, edutainment, entertainment, and mobile commerce services in a safe and responsible manner. Since 1980 the word "telematics" has meant the blending of telecommunications and informatics. Lately, telematics has been used more and more to mean "automotive telematics" which use informatics and telecommunications to enhance the functionality of motor vehicles such as wireless data applications, intelligent cruise control, and GPS in vehicles. This definition identifies telecommunications transferring information as the key enabling technology to provide these advanced services. In this paper, a possible framework for future telematics, which called an Intelligent Vehicle Network(IVN), is proposed. The paper also introduces and compares a number of existing technologies and the terms of their capabilities to support a suite of services. The paper additionally the paper suggests and analyzes possible directions for future telematics from current telematics techniques.

Packet Transmission Scheme for Collecting Traffic Information based on Vehicle Speed in u-TSN system (u-TSN 시스템의 교통정보 수집을 위한 차량 이동속도에 따른 패킷 전송 방안)

  • Bae, Jeong-Kyu;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.35-41
    • /
    • 2010
  • The ubiquitous-transportation sensor network (u-TSN) system is a next generation transportation system that provides traffic information through analysis and processing periodic information from vehicles. In this paper, we propose the adequate transmission scheme from vehicles for collecting vehicular information. The conventional scheme is transmitting each vehicle information every 0.1s. A variable transmission period scheme is proposed in this paper according to vehicle speed. The proposed and conventional schemes are compared with computer simulations.

Vehicle Dynamic Simulation Including an Artificial Neural Network Bushing Model

  • Sohn, Jeong-Hyun;Baek-Woon-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.255-264
    • /
    • 2005
  • In this paper, a practical bushing model is proposed to improve the accuracy of the vehicle dynamic analysis. The results of the rubber bushing are used to develop an empirical bushing model with an artificial neural network. A back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model. Then, a full car dynamic model with artificial neural network bushings is simulated to show the feasibility of the proposed bushing model.

Construction and Comparison of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model (회귀모형과 신경망모형을 이용한 차량공조시스템의 음질 인덱스 구축 및 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Sim, Hyun-Jin;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.897-903
    • /
    • 2006
  • The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness (NVH) engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the heating, ventilation and air conditioning (HVAC) system sound among the vehicle interior noise has been reflected sensitively in psychoacoustics view point. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception to drivers in the way of making to be nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality (SQ) evaluation with acquiring noises recorded by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation 'Pleasant' using the semantic differential method (SDM). The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Furthermore, the neural network (NN) model were obtained using three inputs(loudness, sharpness and roughness) of the SQ metrics and one output(subjective 'Pleasant'). Because human's perception is very complex and hard to estimate their pattern, we used NN model. The estimated models were compared with correlations between output indexes of SQ and hearing test results for verification data 'Pleasant'. As a result of application of the SQ indexes, the NN model was shown with the largest correlation of SQ indexes and we found possibilities to predict the SQ metrics.

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.

Implement integrated vehicle state and video recorder system with OBD-II and MOST network (OBD-II 와 MOST를 이용한 통합형 자동차 상태 및 영상 저장 시스템 구현)

  • Baek, Sung-Hyun;Jang, Jong-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.303-308
    • /
    • 2011
  • Vehicle black boxes that have similar functions as airplane black boxes are currently being used due to the loss of many lives and properties arising from vehicle accidents. Both black-box products and Event Data Recorder(EDR) systems are currently available in the market. Most of the existing in-vehicle black boxes, however, record only external videos and images and cannot show the vehicle's driving status, whereas EDR products record only the driving status and not external videos. To address the problem of black boxes that can record only videos and images and that of EDR systems that can record only driving data, an integrated vehicle state and video recording system that uses MOST(Media-oriented System Transport) and OBD-II(Onboard Diagnostics II) and CAM (camera) and GPS (global positioning system).

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.