• Title/Summary/Keyword: in-vehicle network system

Search Result 787, Processing Time 0.03 seconds

Night-time Vehicle Detection Method Using Convolutional Neural Network (합성곱 신경망 기반 야간 차량 검출 방법)

  • Park, Woong-Kyu;Choi, Yeongyu;KIM, Hyun-Koo;Choi, Gyu-Sang;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

Real-Time Analysis of Occupant Motion for Vehicle Simulator (차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법)

  • Oh, Kwangseok;Son, Kwon;Choi, Kyunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.

A study on the response surface model and the neural network model to optimize the suspension characteristics for Korean High Speed Train (한국형 고속전철 현가장치 최적설계를 위한 반응표면모델과 유전자 알고리즘 모델에 관한 연구)

  • Park Chankyoung;Kim Youngguk;Kim Kiwhan;Bae Daesung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.589-594
    • /
    • 2004
  • In design of suspension system for KHST, it was applied the approximated optimization method using meta-models which called Response Surface Model and Neural Network Model for 29 design variables and 46 performance index. These models was coded using correlation between design variables and performance indices that is made by the 66 times iterative execution through the design of experimental table consisted orthogonal array L32 and D-Optimal design table. The results show that the optimization process is very efficient and simply applicable for complex mechanical system such as railway vehicle system. Also it was compared with the sensitivity of some design variables in order to know the characteristics of two models. This paper describes the general method for dynamic analysis and design process of railway vehicle system applied to KHST development, and proposed the efficient methods for vibration mode analysis process dealing with test data and the function based approximation method using meta-model applicable for a complex mechanical system. This method will be able to apply to the other railway vehicle system in oder to systematize and generalize the design process of railway vehicle dynamic system.

  • PDF

A Study on CAN Based System Reliability Test (CAN기반 시스템의 통신 신뢰성 검증)

  • Kim, Jong-Hyun;Chung, Ki-Hyun;Choi, Kyung-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.3
    • /
    • pp.199-204
    • /
    • 2008
  • Controller Area Network was developed originally for in-vehicle communication network. But it is now widely used for factory automation because of its properties such as strong noise resistance and high reliabilities. With changing communication environments from peer to peer topology to bus topology, we should check each devices about not only mechanical operations but also electronic or software operations. In this paper, we suggest reliability test environment for CAN based system, which is divided two parts, data correctness and timely delivery.

A Neural Network Model to Recognize the Pattern of Intra-City Vehicle Travel Speeds for Truck Dispatching System (배차계획시스템을 위한 도시내 차량이동속도 패턴인식 신경망 모델)

  • 홍성철;박양병
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.221-230
    • /
    • 1999
  • The important issue for intra-city truck dispatching system is to measure and store actual travel speeds between customer locations. Travel speeds(and times) in nearly all metropolitan areas change drastically during the day because of congestion in certain parts of the city road network. We propose a back-propagation neural network model to recognize the pattern of intra-city vehicle travel speeds between locations that relieve much burden for the data collection and computer storage requirements. On a real-world study using the travel speed data[1] collected in Seoul, we evaluate performance of neural network model and compare with Park & Song model[2] that employs the least square method.

  • PDF

Vehicle Dynamic Simulation Using the Neural Network Bushing Model (인공신경망 부싱모델을 사용한 전차량 동역학 시뮬레이션)

  • 손정현;강태호;백운경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.110-118
    • /
    • 2004
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra's algorithm of ‘NARMAX’ form is employed in the neural network bushing module. A numerical example is carried out to verify the developed bushing model.

The development of WTB(Wire Train Bus) Analyzer for the TCN(Train Communication Network) testing (TCN(Train Communication Network) 통신 시험용 WTB(Wire Train Bus) Analyzer 개발)

  • Jeon, Seong-Joon;Paik, Jin-Sung;Shon, Kang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1936-1945
    • /
    • 2008
  • In Korea, TCN has applied to the Korean High-speed Train (HSR350X) through G7 High-speed Train development project. TCN is the most suitable international standard communication network for distributed control systems that is adopted for high-speed of vehicle, safety and flexibility. TCN is the network exclusively for the high-speed train and electrical trains. This TCN satisfies the network standards. The network standards are real time communication, fault tolerance design, integrated data system, resistance of environment, automated recognition for modification of vehicle formation and maintenance. The purpose of this research is applying the development of WTB analyzer which is part of communication network system TCN, to check the communication of high-speed trains and electrical trains.

  • PDF

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

Design and Implementation of Vehicle Control Network Using WiFi Network System (WiFi 네트워크 시스템을 활용한 차량 관제용 네트워크의 설계 및 구현)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.632-637
    • /
    • 2019
  • Recent researches on autonomous driving of vehicles are becoming very active, and it is a trend to assist safe driving and improve driver's convenience. Autonomous vehicles are required to combine artificial intelligence, image recognition capability, and Internet communication between objects. Because mobile telecommunication networks have limitations in their processing, they can be easily implemented and scale using an easily expandable Wi-Fi network. We propose a wireless design method to construct such a vehicle control network. We propose the arrangement of AP and the software configuration method to minimize loss of data transmission / reception of mobile terminal. Through the design of the proposed network system, the communication performance of the moving vehicle can be dramatically increased. We also verify the packet structure of GPS, video, voice, and data communication that can be used for the vehicle through experiments on the movement of various terminal devices. This wireless design technology can be extended to various general purpose wireless networks such as 2.4GHz, 5GHz and 10GHz Wi-Fi. It is also possible to link wireless intelligent road network with autonomous driving.

Multi Objective Vehicle and Drone Routing Problem with Time Window

  • Park, Tae Joon;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.167-178
    • /
    • 2019
  • In this paper, we study the multi-objectives vehicle and drone routing problem with time windows, MOVDRPTW for short, which is defined in an urban delivery network. We consider the dual modal delivery system consisting of drones and vehicles. Drones are used as a complement to the vehicle and operate in a point to point manner between the depot and the customer. Customers make various requests. They prefer to receive delivery services within the predetermined time range and some customers require fast delivery. The purpose of this paper is to investigate the effectiveness of the delivery strategy of using drones and vehicles together with a multi-objective measures. As experiment datasets, we use the instances generated based on actual courier delivery data. We propose a hybrid multi-objective evolutionary algorithm for solving MOVDRPTW. Our results confirm that the vehicle-drone mixed strategy has 30% cost advantage over vehicle only strategy.