• Title/Summary/Keyword: in-situ stresses

Search Result 124, Processing Time 0.025 seconds

Convergence change in a tunnel face approaching fault zones (파쇄대에 접근하는 터널의 내공변위 변화 해석)

  • Lee, In-Mo;Lee, Seung-Ju;Lee, Joo-Gong;Lee, Dae-Hyuck
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.235-245
    • /
    • 2002
  • The purpose of this study is to figure out the tendency of tunnel convergence during excavation and to present a methodology for the prediction of a fault zone ahead of a tunnel face by analyzing three dimensional displacements in various ways. 3-D numerical analysis was performed to investigate changes of tunnel convergence vectors near a fault zone and to propose a flow chart for predicting fault zones. Results of the site investigation and results of trend line analysis of in-situ data were compared to verify the usefulness of a trend line analysis. It is concluded that the orientation of faults can be predicted by using stereonets and the direction of initial stresses can be predicted from the arm length of a displacement vector as a tunnel approaches fault zones. The results of the trend line analysis coincided with those of the site investigation, and a methodology for the prediction of a fault zone was proposed.

  • PDF

Residual Stress Behavior of High Temperature Polyimide Thin Films depending on the Structural Isomers of Diamine (Diamine의 구조적 이성질체에 따른 내열성 폴리이미드 박막의 잔류응력거동)

  • 임창호;정현수;한학수
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.23-30
    • /
    • 1999
  • The relationships between morphological structures and residual stress behaviors of polyimide thin films depending on isomeric diamines were investigated. For this study, Poly(phenylene biphenyltetracarboximide) (BPDA-PDA) and poly(oxydiphenylene biphenyltetracarboximide) (BPDA-ODA) films were prepared from their isomeric diamines: 1,3-phenylene diamine (1,3-PDA) 1,4-phenylene diamine (1.4-PDA), 3,4'-oxydiphenylene diamine (3,4'-ODA), and 4,4'-oxydiphenylene diamine (4,4'-ODA), respectively. For those films, residual stresses were detected in-situ during thermal imidization of the isomeric polyimide as a function of processing temperature over the range of 25~$400^{\circ}C$ using. Thin Film Stress Analyzer (TFSA). In comparison, residual stress of BPDA-1.4PDA having better in-plain orientation and chain order was the lowest value of 7MPa whereas those of BPDA-1,3-PDA, BPDA-3,4'-ODA, and BPDA-4,4'-ODA were in the range of 40-50MPa. Conclusively, the effect of morphological nature (chain rigidity, chain order, orientation) and chain mobility relating to the g1ass transition behavior on the residual stress of isomeric polyimide thin films wart analyzed.

  • PDF

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

A Study on the Shape and Size Effects on the Stability of Underground Openings (지하공동의 형상과 규모가 공동의 안정성에 미치는 영향 연구)

  • 박상찬;문현구
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.93-108
    • /
    • 1998
  • In this study, the analytic solutions and numerical methods were used to estimate the shape and size effects on the stability of underground openings. The stability of underground openings was evaluated by scrutinizing the effects of the rock mass quality, the state of in-situ stresses and the lateral earth pressure coefficient on the displacement, the stress concentration and the plastic region developed in the vicinity of the openings. The analytic solutions have shown that the stress concentration factor is inversely proportional to the radius of curvature of openings. Through parametric study on the various shapes and sizes of underground openings the characteristics of the controlling factors concerned with the stability were analyzed. Then, the study was extended to the horseshoe-shaped openings commonly used for under ground storage. Through the extended study the effects of the stress ratio and the height-towidth ratio of openings on the maximum displacement and plastic region developed around the openings were estimated. The results have shorn that the height-to-width ratio of domestic storage caverns can be increased economically without stability problem, as far as the lateral earth pressure coefficient is appropriate.

  • PDF

The Influence of Initial Stress Ratio on the Stress~Strain Characteristics of Geosynthetics Reinforced Clayey Soil (토목섬유 보강점성토의 응력~변형특성에 미치는 초기응력비의 영향)

  • 이재열;이광준;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.169-178
    • /
    • 2002
  • The stress~strain characteristics of geosynthetics reinforced clayey soil were investigated by triaxial compression tests. All the tests were peformed either on unreinforced or reinforced soils under fully drained condition after having been consolidated isotropically or anisotropically to the required level of effective stresses by the small increment of 0.05kgf/$cm^2$. The anisotropically consolidated drained tests were performed to simulate the in-situ condition of reinforced soil structures such as reinforced soil wall, abutment and embankment which are generally in the anisotrpic state. From a series of tests it was ffund that the behavior of the anisotropically consolidated reinforced clayey soils was very different from stress~strain characteristics of consolidated reinferced clayey soils. It was found especially that the initial Young's moduli of anisotropically consolidated reinforced clayey soils were higher than those of isotropically consolidated reinforced clayey soils. It was found also that the reinforcement effect in anisotropically consolidated reinforced soils developed at a much lower level of axial strain(0.01%) compared with isotropically consolidated ones(about 1.0~5.0%).

Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring (복합재 판스프링의 재료특성에 따른 스프링 강성변화와 초기 파단하중 예측)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1345-1350
    • /
    • 2014
  • This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

A Critical Review on Setting up the Concept, Timing and Mechanism of Tertiary Tilted Flexural Mode of the Korean Peninsula: A new hypothesis derived from plate tectonics ('신생대 제3기 경동성 요곡운동'의 개념, 시기, 기작에 관한 비판적 고찰: 판구조운동 기원의 새로운 가설)

  • Shin, Jaeryul;Hwang, Sangill
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.200-220
    • /
    • 2014
  • This study reexamines the old concept and reviews prevalent statements on Cenozoic vertical motions of the peninsula that have been uncritically repeated in our academia. The contents of this paper are redefinition of the notion, tilted flexure or warping, and a suggestion for a new time set and properties of the deformation, followed by a new model on its influencing factors and processes. In conclusion, the Cenozoic vertical motion of the Korean peninsula can be reified further with an epeirogenic movement of uplift in the east side-subsidence in the west side of the peninsula since the Neogene (23 Ma). However, the regional boundary for areas of uplift and subsidence is not likely in the Korean peninsula but broader farther to East China and the southern part of Russia. It can be best understood that mantle convection produced by subducting activities in the Western Pacific Subduction Zone causes the uplift and subsidence of earth surface around NE Asia. In addition, faultings in the upper lithosphere induced by in-situ plate boundary stresses accelerate regional uplift in the peninsula since the Quaternary. Controversies that are still standing such as current uplift movements along the western coast of the peninsula during the late Quaternary could be precisely discussed with future research providing detailed information on it.

  • PDF

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF