• Title/Summary/Keyword: in-situ and liquefaction

Search Result 20, Processing Time 0.019 seconds

A Study on Evaluation of Liquefaction Potential Using in Situ Test Data (원위치 시험 성과에 의한 액상화 발생가능성 평가에 관한 연구)

  • 허정우;김찬홍;박성재;정경환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.477-484
    • /
    • 2001
  • In this paper shows the evaluation of the liquefaction potential of soils using in situ test. There are different types of in situ test used in the evaluation the liquefaction potential. In the particular study the Standard penetration test(SPT), Cone penetration test(CPT), ad Seismic cone penetration test (SCPT) were used. The SPT N value has been used all over for a very long time. The evaluation of the liquefaction of soil was preformed using the worldwide renowned CPT and SCPT. Shake 91 program was used to evaluate the results obtained by different in situ test and were later analyzed.

  • PDF

Reduction Effect of liquefaction by Vibro-Replacement Stone Columns (진동치환 스톤칼럼공법에 의한 액상화 저감 효과)

  • Lee, Song;Chae, Jum-Sik;Park, Sang-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.443-450
    • /
    • 2001
  • This paper shows the reduction effect of tile earthquake-induced liquefaction potential of soils that improved by Vibro-Replacement Stone Columns. The Vibro-Replacement Stone Columns method transforms soft cohesive soils into a composite mass of compacted granular or crushed stone columns by using vibrating equipment and water jets. This study investigated and analyzed the behavior of the stone columns and composite ground using the results of in situ test and measurement at the job-site. This paper shows the evaluation of the earthquake-induced liquefaction potential of soils using in situ test. There are different types of in situ test used in the evaluation the liquefaction potential. In the particular study the Standard penetration test, and Cone penetration test were used. The N value of Standard Penetration test has been used all over for a very long time. The evaluation of the liquefaction of soil was performed using the worldwide renewed Cone penetration test

  • PDF

Utilizing piezovibrocone in marine soils at Tauranga Harbor, New Zealand

  • Jorat, M. Ehsan;Morz, Tobias;Moon, Vicki;Kreiter, Stefan;de Lange, Willem
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Piezovibrocones have been developed to evaluate the liquefaction potential of onshore soils, but have not yet been utilized to evaluate the in-situ liquefaction behavior of offshore marine and volcanoclastic sediments. Two static and vibratory CPTu (Cone Penetration Tests) were performed at Tauranga Harbor, New Zealand. The lithology is known from nearby drillholes and the influence of vibration on different types of marine soils is evaluated using the reduction ratio (RR) calculated from static and vibratory CPTu. A sediment layer with high potential for liquefaction and one with a slight reaction to cyclic loading are identified. In addition to the reduction ratio, the liquefaction potential of sediment is analyzed using classic correlations for static CPTu data, but no liquefaction potential was determined. This points to an underestimation of liquefaction potential with the classic static CPTu correlations in marine soil. Results show that piezovibrocone tests are a sensitive tool for liquefaction analysis in offshore marine and volcanoclastic soil.

Mitigation of liquefaction-induced uplift of underground structures by soil replacement methods

  • Sudevan, Priya Beena;Boominathan, A.;Banerjee, Subhadeep
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.365-379
    • /
    • 2020
  • One of the leading causes for the damage of various underground structures during an earthquake is soil liquefaction, and among this liquefaction-induced uplift of these structures is a major concern. In this study, finite-difference modelling is carried out to study the liquefaction-induced uplift of an underground structure of 5 m diameter (D) with and without the replacement of the in-situ fine sand around the structure with the coarse sand. Soil replacements are carried out by three methods: replacement of soil above the structure, around the structure, and below the structure. The soil behaviour is represented using the elastic-perfectly plastic Mohr-Coulomb model, where the pore pressures were computed using Finn-Byrne formulation. The predicted pore pressure and uplift of the structure due to sinusoidal input motion were validated with the centrifuge tests reported in the literature. Based on numerical studies, an empirical equation is developed for the determination of liquefaction-induced maximum uplift of the underground structure without replacement of the in-situ sand. It is found that the replacement of soil around the structure with 2D width and spacing of D can reduce the maximum uplift by 50%.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.269-284
    • /
    • 2016
  • Simplified techniques based on in situ testing methods are commonly used to assess seismic liquefaction potential. Many of these simplified methods were developed by analyzing liquefaction case histories from which the liquefaction boundary (limit state) separating two categories (the occurrence or non-occurrence of liquefaction) is determined. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to develop a comprehensive model using conventional modeling techniques that take into consideration all the independent variables, such as the seismic and soil properties. In this study, a modification of the Multivariate Adaptive Regression Splines (MARS) approach based on Logistic Regression (LR) LR_MARS is used to evaluate seismic liquefaction potential based on actual field records. Three different LR_MARS models were used to analyze three different field liquefaction databases and the results are compared with the neural network approaches. The developed spline functions and the limit state functions obtained reveal that the LR_MARS models can capture and describe the intrinsic, complex relationship between seismic parameters, soil parameters, and the liquefaction potential without having to make any assumptions about the underlying relationship between the various variables. Considering its computational efficiency, simplicity of interpretation, predictive accuracy, its data-driven and adaptive nature and its ability to map the interaction between variables, the use of LR_MARS model in assessing seismic liquefaction potential is promising.

A Study on the Liquefaction Resistance of Anisotropic Sample under Real Earthquake Loading (이방 구속 조건에서 실지진 하중을 이용한 액상화 저항강도 특성 분석)

  • Lee, Chae-Jin;Jeong, Sang-Seom;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1188-1191
    • /
    • 2009
  • In this study, cyclic triaxial tests were performed with the samples which were anisotropically consolidated using irregular earthquake loading to consider in-situ condition and seismic wave. The consolidation pressure ratio(K) was changed from 0.5 to 1.0. The Ofunato and Hachinohe wave are applied as irregular earthquake loading and liquefaction resistance strength was estimated from excess pore water pressure(EPWP) ratio. As results of the cyclic triaxial tests, buildup of EPWP ratio increased as K value increased. It shows, that the isotropically consolidated sands is more susceptible to liquefaction than anisotropically consolidated sands under equal conditions such as confining pressure and dynamic loading.

  • PDF

A study on the improvements of geotechnical properties of in-situ soils by grouting

  • Chang, Muhsiung;Mao, Tze-wen;Huang, Ren-chung
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.527-546
    • /
    • 2016
  • This paper discusses improvements of compressibility, permeability, static and liquefaction strengths of in-situ soils by grouting. Both field testing and laboratory evaluation of the on-site samples were conducted. The improvement of soils was influenced by two main factors, i.e., the grout materials and the injection mechanisms introduced by the field grouting. On-site grout mapping revealed the major mechanism was fracturing accompanied with some permeation at deeper zones of sandy soils, where long-gel time suspension grout and solution grout were applied. The study found the compressibility and swelling potential of CL soils at a 0.5 m distance to grout hole could be reduced by 25% and 50%, respectively, due to the grouting. The effect on hydraulic conductivity of the CL soils appeared insignificant. The grouting slightly improved the cohesion of the CL soils by 10~15 kPa, and the friction angle appeared unaffected. The grouting had also improved the cohesion of the on-site SM soils by 10~90 kPa, while influences on the friction angle of soils were uncertain. Liquefaction resistances could be enhanced for the sandy soils within a 2~3 m extent to the grout hole. Average improvements of 40% and 20% on the liquefaction resistance were achievable for the sandy soils for earthquake magnitudes of 6 and ${\geq}7.5$, respectively, by the grouting.

Effects of Anisotropic Consolidation on Strength of Soils (이방압밀이 흙의 강도에 미치는 영향)

  • 강병희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

A Study on the Ortho-para Hydrogen Conversion Characteristics of Liquefied Hydrogen by Perovskite Catalysts (페로브스카이트 촉매에 의한 액화수소의 올소-파라 수소변환특성에 관한 연구)

  • Nah, In Wook;Kim, Jung Hyun;Das, Taraknath;Kwon, Soon-Cheol;Oh, In-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • During the liquefaction of hydrogen, the ortho hydrogen is converted into the para form with heat release that evaporates the liquefied hydrogen into the gaseous one backwards. The ortho-para conversion catalysts are usually used during liquefaction to avoid such boil-off. In order to compare and analyze the performance of the ortho-para hydrogen conversion catalysts, in-situ FT-IR device was designed and manufactured to measure the para hydrogen conversion rate in real-time. $LaFeO_3$ and $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalysts were prepared by the citrate sol-gel method and their spin conversion characteristics from ortho to para hydrogen were investigated by in-situ FTIR spectroscopy at 17K. It was found that the spin conversion was affected by surface area, particle size, and crystallite size of the catalysts. Thus, the $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalyst that had higher surface area, higher crystallite size, and smaller particle size than $LaFeO_3$ showed the better spin conversion property of 32.3% at 17K in 120min interaction with the perovskite catalysts.