• Title/Summary/Keyword: in-situ SEM

Search Result 197, Processing Time 0.027 seconds

Preparation and Application of Pore-filled PVDF ion Exchange Membranes (Pore-filled PVDF 이온교환막의 제조 및 응용)

  • 변홍식;박병규;홍병표;여광수;윤무홍;강남주
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.108-116
    • /
    • 2004
  • In this study, the pore-filled ion-exchange membranes were prepared by using the asymmetric PVDF membrane as a nascent membrane. First, the solution of PVBCI having the chlorornethylate aryl ring of 80 percents and DABCO was made with the mixed solvent of THF and DU (8:2). These mixed solution was then, filled in the pores of PVDF membrane, and left for a day to complete the gelation. Finally the pore-filled anion-exchange membrane is obtained fallowed by the amination of the remaining chloromethyl groups with trimethylamine (TMA, 40 wt% in water) forming the positive ammonium ion sites. This 2 step procedure enabled us to produce the pore-filled membranes without change of size, and to control the properties of final membrane with various degree of cross-linking. The results of SEM and AFM showed the polyelectrolyte existed in the pores of nascent membrane as a certain configuration. From the investigation of the solvent affecting much to the permeability and rejection, it was found that the membranes using mixed solvent of THE and DMF (8:2) showed better performances than the membranes produced by THF only. The result of an investigation for the water permeability of the final membrane at low pressure (100 Kpa) showed a typical ultrafiltration membrane's permeability (8 ∼ 10 kg/$m^2$hr) and good values of rejection (55∼60 percent).

A Study on the Effect of Si Surface on Diamond Film Growth by AES (Diamond 박막 성장에 미치는 Si 표면 영향의 AES에 의한 연구)

  • Lee, Cheol-Ro;Sin, Yong-Hyeon;Im, Jae-Yeong;Jeong, Gwang-Hwa;Cheon, Byeong-Seon
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.199-208
    • /
    • 1993
  • The effect of nucleation free energy related to Si surface states on diamond film growth behavior has been studied. Ar first, the three kinds of diamond thin films (A, B, C) were deposited on various Si substrates (A-Si, B-Si, C-Si) whose surfaces were polished with 1 ${\mu}m$ diamond paste, 6 ${\mu}m$ Al_2O_3$ powder and 12 ${\mu}m$ Al_2O_3$ powder respectively. And then, relative nucleation free energy calculated is ${\Delta}G_{A-Si}<{\Delta}G_{B-Si}<{\Delta}G_{C-Si}$. Although there are some difference in grain size, shape and nucleated size, the thin films on A-Si and B-Si were diamond including a small amount of DLC which was confirmed by AES, SEM, XRD, and RHEED. Namely, the diamonds of films (B) were not nucleated in scratches but in dents and larger in grain size compare with the film (C) of which diamond sere nucleated not only scratches but also dents. And, the sphere diamond which is not general shape was grown on C-Si. After all, the sphere was turned out to be the diamond including much graphite as a result of the AES in situ depth profiling. Consequently, the diamond shape and quality grown on Si were Changed from the crystal which the (100) and (110) planes were predominent to the crystal in which (111) plane was predominent, and newt to sphere shape diamond including much graphite according as the nucleation free energy increases.

  • PDF

Control of Persulfate Activation Rate and Improvement of Active Species Transfer Rate Using Selenium-modified ZVI (셀레늄으로 개질된 영가철을 이용한 과황산 활성화 속도 조절 및 활성종 전달율 향상에 관한 연구)

  • Hee-won Kwon;Hae-Seong Park;In-seong Hwang;Jeong-Jin Kim;Young-Hun Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • The advanced oxidation treatment using persulfate and zero-valent iron (ZVI) has been evaluated as a very effective technology for remediation of soil and groundwater contamination. However, the high rate of the initial reaction of persulfate with ZVI causes over-consumption of an injected persulfate, and the excessively generated active species show a low transfer rate to the target pollutant. In this study, ZVI was modified using selenium with very low reactivity in the water environment with the aim of controlling the persulfate activation rate by controlling the reactivity of ZVI. Selenium-modified ZVI (Se/ZVI) was confirmed to have a selenium coating on the surface through SEM/EDS analysis, and low reductive reactivity to trichlroethylene (TCE) was observed. As a result of inducing the persulfate activation using the synthesized Se/ZVI, the persulfated consumption rate was greatly reduced, and the decomposition rate of the model contaminant, anisole, was also reduced in proportion. However, the final decomposition efficiency was rather increased, which seems to be the result of preventing persulfate over-consumption. This is because the transfer efficiency of the active species (SO4-∙) of persulfate to the target contaminant has been improved. Selenium on the surface of Se/ZVI was not significantly dissolved even under oxidation conditions by persulfate, and most of it was present in the form of Se/ZVI. It was confirmed that the persulfate activation rate could be controlled by controlling the reactivity of ZVI, which could greatly contribute to the improvement of the persulfate oxidation efficiency.

Preparation of Electrochemically Stable and SERS Active Silica@Gold Microshell (전기화학 반응용 표면증강라만산란 활성 실리카@금 마이크로쉘의 제작)

  • Piao, Lilin;Lee, Jihye;Chung, Taek Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • In order to monitor in situ electrochemical reaction we prepared the gold microshells on silica microspheres of $2{\mu}m$ in diameter which were able to not only work as electrodes but also surface enhanced Raman scattering (SERS) active substrates. Previously reported gold microshell using polystyrene as core material have a few serious problems, mostly coming from solubility in organic solvent, nonuniform distribution in size and toxicity of the polystyrene. Here we prepared silica core-gold microshell to obtain a strong SERS active platform benefitting from the physicochemical stability, uniformity and non-toxicity of silica. Varying the concentration of 3-aminopropyl triethoxysilane (APTES), the surfaces of silica beads were modified and the optimal condition was determined to be 1% APTES that made the SERS activity of gold microshell strongest. The gold microshells as made were characterized by homemade Micro-Raman system spectrometer, Field-Emission Scanning Electron Microscope.

Preparation and Bioavailability of Oriental Medicine Containing Baicalin (III) : Preparation of Inclusion Complex and Bioavailability of Coprecipitated Product of Scutellariae Radix and Coptidis Rhizoma (바이칼린 함유 생약의 제제화 및 생체이용률 (제3보) : 황금 및 황련 공침물의 포접화합물 제조 및 생체이용률에 관한 연구)

  • Yang, Jae-Heon;Shin, Sang-Chul;Yoo, Hee-Doo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.29-38
    • /
    • 1997
  • Precipitation was formed during the preparation of decoction from a mixture of Scutellariae Radix and Coptidis Rhizoma. Baicalin and berberine were identified in this coprecipitated product (CPP) and these components were the active ingredients of two herbal medicine. We extracted respectively crude baicalin and berberine in Scutellariae Radix and Coptidis Rhizoma and prepared coprecipitate of crude baicalin-berberine. To increase the stability and bioavailability of coprecipitate of crude baicalin-berberine(CBB), which is slightly soluble drug, its inclusion complex was prepared and studied in this experiment. Inclusion complex of CBB with ${\beta}-cyclodextrin(CBB-{\beta}-CD)$ was prepared by freeze drying method and its characteristics were ascertained by means of solubility test, differential thermal analysis(DTA) and scanning electron microscope(SEM). The type of $CBB-{\beta}-CD$ is classified as $A_L-type$ on phase solubility diagram, and the stoichiometric ratio of CBB(baicalin in CBB) : ${\beta}-CD$ complex is 1:1 and formation constant is 151 $M^-1$. The solubility, dissolution, in situ absorption and serum concentration of $CBB-{\beta}-CD$ were significantly increased when compared to CBB. Therefore enhanced bioavailability of CBB by inclusion complexation with ${\beta}-cyclodextrin$ might be useful for dosage form design of active ingredients of two herbal medicine.

  • PDF

Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models

  • Yun Dawei;Zheng Bing;Gu Bingbing;Gao Xibo;Behnaz Razzaghzadeh
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.673-686
    • /
    • 2023
  • Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.

In-situ modification of PVC UF membrane by SiO2 sol in the coagulation bath during NIPS process

  • Cheng, Liang;Xu, Zhen-Liang;Yang, Hu;Wei, Yong-Min
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.317-325
    • /
    • 2018
  • Polyvinyl chloride (PVC) ultrafiltration (UF) membrane was modified by silica sol in the coagulation bath during non-solvent induced phase separation (NIPS) process. The effects of silica sol concentrations on the morphology, surface property, mechanical strength and separation property of PVC UF membranes were systematically investigated. PVC membranes were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), contact angle goniometry and tensile strength measurement. The results showed that silica had been successfully assembled on the surface of PVC UF membrane. With the increase of silica sol concentration in the coagulation bath, the morphologies of PVC UF membranes changed from cavity structure to finger-like pore structure and asymmetric cross-section structure. The hydrophilicity and permeability of PVC UF membranes were further evaluated. When silica sol concentration was 20 wt.%, the modified PVC membrane exhibited the highest hydrophilicity with a static contact angle of $36.5^{\circ}$ and permeability of $91.8(L{\cdot}m^{-2}{\cdot}h^{-1})$. The structure of self-assemble silica had significant impact on the surface property, morphology, mechanical strength and resultant separation performance of the PVC membranes.

Al2TiO5-machinable Ceramics Made by Reactive Sintering of Al2O3 and TiO2 (Al2O3와 TiO2의 반응소결로 제조한 Al2TiO5-기계가공성 세라믹스)

  • Park, Jae-Hyun;Lee, Won-Jae;Kim, Il-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.498-502
    • /
    • 2010
  • Aluminium titanate($Al_2TiO_5$) has extremely anisotropic thermal expansion properties in single crystals, and polycrystalline material spontaneously microcracks in the cooling step after sintering process. These fine intergranular cracks limit the strength of the material, but provide an effective mechanism for absorbing strain energy during thermal shock and preventing catastrophic crack propagation. Furthermore, since machinable BN-ceramics used as an insulating substrate in current micro-electronic industry are very expensive, the development of new low-cost machinable substrate ceramics are consistently required. Therefore, cheap $Al_2TiO_5$-machinable ceramics was studied for the replacement of BN ceramics. $Al_2O_3-Al_2TiO_5$ ceramic composite was fabricated via in-situ reaction sintering. $Al_2O_3$ and $TiO_2$ powders were mixed with various mol-ratio and sintered at 1400 to $1600^{\circ}C$ for 1 h. Density, hardness and strength of sintered ceramics were systematically measured. Phase analysis and microstructures were observed by XRD and SEM, respectively. Machinability of each specimens was tested by micro-hole machining. The results of research showed that the $Al_2TiO_5$-composites could be used for low-cost machinable ceramics.

Influence of joint modelling on the pushover analysis of a RC frame

  • Costa, Ricardo;Providencia, Paulo;Ferreira, Miguel
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.641-652
    • /
    • 2017
  • In general, conventional analysis and design of reinforced concrete (RC) frame structures overlook the role of beam-column (RCBC) joints. Nowadays, the rigid joint model is one of the most common for RCBC joints: the joint is assumed to be rigid (unable to deform) and stronger than the adjacent beams and columns (does not fail before them). This model is popular because (i) the application of the capacity design principles excludes the possibility of the joint failing before the adjacent beams and (ii) many believe that the actual behaviour of RCBC joints designed according to the seismic codes produced mainly after the 1980s can be assumed to be nominally rigid. This study investigates the relevance of the deformation of RCBC joints in a standard pushover analysis at several levels: frame, storey, element and cross-section. Accordingly, a RC frame designed according to preliminary versions of EN 1992-1-1 and EN 1998-1 was analysed, considering the nonlinear behaviour of beams and columns by means of a standard sectional fibre model. Two alternative models were used for the RCBC joints: the rigid model and an explicit component based nonlinear model. The effect of RCBC joints modelling was found to be twofold: (i) the flexibility of the joints substantially increases the frame lateral deformation for a given load (30 to 50%), and (ii) in terms of seismic performance, it was found that joint flexibility (ii-1) appears to have a minor effect on the force and displacement corresponding to the performance point (seismic demand assessed at frame level), but (ii-2) has a major influence on the seismic demand when assessed at storey, element and cross-section levels.

Mechanical Behavior of Directionally Solicified (Y2O3)ZrO2/Al2O3 Eurtctic Fibers

  • Park, Deok-Yong;Yang, Jenn-Ming
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The microstructural features and mechanical behavior of directionally solidified $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fibers after extended beat treatment in oxidizing environment were investigated. The fiber was grown continuously by an Edge-defined Film-fed Growth (EFG) technique. The microstructure was characterized using X-Ray Diffraction (XRD) and Scanning Electron Microscopy(SEM). The microstructure of the fiber in the as-fabricated state consists of highly oriented colonv and fine lamellar microstructure along the fiber axis. Tensile strength of the $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber remained unchanged with heat treatment at temperatures between $1200^{\circ}C$ and $1500^{\circ}C$ up to 300h. The weibulls modulus remained fairly constant after extended thermal exposure. The fracture toughness and crack propagation behavior were investigated. The fracture toughness ($K_{1C}$) of the $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber in the as-fabricated state were measured to be 3.6 ${\pm}$ 0.5 MPa${\cdot}m^{1/2}$ by an indentation technique and 2.2 ${\pm}$ 0.2 MPa${\cdot}m^{1/2}$ by assuming elliptical flaw of a semi-infinite solid, respectively. The $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber showed a radial (Palmqvist) crack type and exhibited an orthotropic crack growth behavior under 100 g load.