DOI QR코드

DOI QR Code

Preparation of Electrochemically Stable and SERS Active Silica@Gold Microshell

전기화학 반응용 표면증강라만산란 활성 실리카@금 마이크로쉘의 제작

  • Piao, Lilin (Department of Chemistry, Seoul National University) ;
  • Lee, Jihye (Department of Chemistry, Seoul National University) ;
  • Chung, Taek Dong (Department of Chemistry, Seoul National University)
  • 박려림 (서울대학교 자연과학대학 화학부) ;
  • 이지혜 (서울대학교 자연과학대학 화학부) ;
  • 정택동 (서울대학교 자연과학대학 화학부)
  • Received : 2013.02.07
  • Accepted : 2013.02.27
  • Published : 2013.02.28

Abstract

In order to monitor in situ electrochemical reaction we prepared the gold microshells on silica microspheres of $2{\mu}m$ in diameter which were able to not only work as electrodes but also surface enhanced Raman scattering (SERS) active substrates. Previously reported gold microshell using polystyrene as core material have a few serious problems, mostly coming from solubility in organic solvent, nonuniform distribution in size and toxicity of the polystyrene. Here we prepared silica core-gold microshell to obtain a strong SERS active platform benefitting from the physicochemical stability, uniformity and non-toxicity of silica. Varying the concentration of 3-aminopropyl triethoxysilane (APTES), the surfaces of silica beads were modified and the optimal condition was determined to be 1% APTES that made the SERS activity of gold microshell strongest. The gold microshells as made were characterized by homemade Micro-Raman system spectrometer, Field-Emission Scanning Electron Microscope.

전극과 용액 사이 계면에서 일어나는 전기화학 반응 현상을 보다 정확하게 이해하기 위하여 전기화학 반응과정을 분광학적 방법으로 실시간으로 모니터링 할 수 있는 전극으로도 작동할 뿐만 아니라 표면증강라만산란(SERS) 활성도 강한 금 마이크로쉘을 제조하였다. 기존에 보고된 금 마이크로쉘에서 핵으로 사용한 폴리스티렌의 경우 균일성이 떨어지고 유기용매에 약하며 독성이 있다. 이에 본 연구에서는 폴리스티렌 보다 균일한 구조를 가지고, 유기 용매에서도 사용 가능하며 무독한 실리카 비드를 이용하여 금 마이크로쉘을 만들고 높은 SERS 신호를 낼 수 있도록 최적화시켰다. $2{\mu}m$ 실리카 비드 표면에 서로 다른 양의 3-aminopropyl triethoxysilane (APTES)를 반응시켜 얻은 금 마이크로쉘에서 SERS 신호가 가장 월등히 증폭되는 조건을 비교한 결과 1% (v/v) APTES 조건에서 SERS 신호의 증폭이 가장 컸다. 표면증강라만산란 스펙트럼 및 전계방출형 주사전자현미경(FE-SEM) 이미지를 통해 금 마이크로쉘을 분석하였다.

Keywords

References

  1. A. Schulte and W. Schuhmann, 'Single-Cell Microelectrochemistry', Angew. Chem. Int. Ed., 46, 8760 (2007). https://doi.org/10.1002/anie.200604851
  2. O. H. Han, K. S. Han, C. W. Shin, J. Lee, S.-S. Kim, M. S. Um, H.-I. Joh, S.-K. Kim, and H. Y. Ha, 'Observation of Methanol Behavior in Fuel Cells In Situ by NMR Spectroscopy', Angew. Chem. Int. Ed., 51, 3842 (2012). https://doi.org/10.1002/anie.201108330
  3. G. Syrrokostas, A. Siokou, G. Leftheriotis, and P. Yianoulis, 'Degradation mechanisms of Pt counter electrodes for dyesensitized solar cells', Sol. Energy Mater. Sol. Cells, 103, 119 (2012). https://doi.org/10.1016/j.solmat.2012.04.021
  4. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, 'In Situ Observation of the Electrochemical Lithiation of a Single $SnO_{2}$ Nanowire Electrode', Science, 330, 1515 (2010). https://doi.org/10.1126/science.1195628
  5. J.-Y. Wang, H.-X. Zhang, K. Jiang, and W.-B. Cai, 'From HCOOH to CO at Pd Electrodes: A Surface-Enhanced Infrared Spectroscopy Study', J. Am. Chem. Soc., 133, 14876 (2011). https://doi.org/10.1021/ja205747j
  6. B. L. Mojet, S. D. Ebbesenz, and L. Lefferts, 'In-situ Characterization of Heterogeneous Catalysts Themed Issue', Chem. Rev. Soc., 39, 4643 (2010). https://doi.org/10.1039/c0cs00014k
  7. K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, 'Observing Metal-Catalyzed Chemical Reactions In Situ using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells', J. Am. Chem. Soc., 130, 16592 (2008). https://doi.org/10.1021/ja803556k
  8. A. Wang, Y.-F. Huang, U. K. Sur, D.-Y. Wu, B. Ren, S. Rondinini, C. Amatore, and Z.-Q. Tian, 'In Situ Identification of Intermediates of Benzyl Chloride Reduction at a Silver Electrode by SERS Coupled with DFT Calculations', J. Am. Chem. Soc., 132, 9534 (2010). https://doi.org/10.1021/ja1024639
  9. D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, 'Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures', Chem. Soc. Rev., 37, 1025 (2008). https://doi.org/10.1039/b707872m
  10. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, 'Surface-Enhanced Raman Spectroscopy' Anal. Chem., 77, 338A (2005).
  11. S. J. Lee, A. R. Morrill, and M. Moskovits, 'Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy' J. Am. Chem. Soc., 128, 2201 (2006).
  12. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, 'Surface Enhanced Raman Scattering in the Near Infrared using Metal Nanoshell Substrates', J. Chem. Phys., 111, 4729 (1999). https://doi.org/10.1063/1.479235
  13. L. Piao, S. J. Park, H. B. Lee, K. Kim, J. W. Kim, and T. D. Chung, 'Single Gold Microshell Tailored to Sensitive Surface Enhanced Raman Scattering Probe', Anal. Chem., 82, 447 (2010). https://doi.org/10.1021/ac901904v
  14. B. J. Kim, D. J. Lee, Y. R. Kim, S. Y. Lim, J. H. Bae, K. B. Kim, and T. D. Chung, 'Gold Microshell Tip for In Situ Electrochemical Raman Spectroscopy', Adv. Mater., 24, 421 (2012). https://doi.org/10.1002/adma.201103644
  15. S. J. Kim, L. Piao, D. H. Han, B. J. Kim, and T. D. Chung, 'Surface Enhanced Raman Scattering on Non- SERS Active Substrates and In Situ Electrochemical Study based on Single Gold Microshell' Adv. Mater. in press.
  16. D. H. Han, S. Y. Lim, B. J. Kim, L. Piao, and T. D. Chung, 'Mercury(II) Detection by SERS based on a Single Gold Microshell' Chem. Commun., 46, 5587 (2010). https://doi.org/10.1039/c0cc00895h
  17. S. Lee, S. Joo, S. Park, S. Kim, H. C. Kim, and T. D. Chung, 'SERS Decoding of Micro Gold Shells Moving in Microfluidic Systems', Electrophoresis, 31, 1 (2010). https://doi.org/10.1002/elps.200990124
  18. E. Kandpal, S. Kalele, and S. K. Kulkarni, 'Synthesis and Characterization of silica-gold core-shell ($SiO_{2}@Au$) nanoparticles', Indian Academy of Sciences, 69, 277 (2007).