Journal of Korean Institute of Industrial Engineers
/
v.24
no.3
/
pp.431-446
/
1998
In this paper, we consider the problem of scheduling n jobs with sequence-dependent processing times on a set of parallel-identical machines. The processing time of each job consists of a pure processing time and a sequence-dependent setup time. The objective is to maximize the total remaining machine available time which can be used for other tasks. For the problem, we first propose a dynamic programming(DP) algorithm for sequencing jobs processed on a single machine. The algorithm is then extended to handle jobs on parallel-identical machines. Finally, we developed an improved version of the algorithm which generates optimal solutions using much smaller amount of memory space and computing time. Computational results are provided to illustrate the performance of the DP algorithms.
Three-dimensional description of building structure taking into consideration soil-structure interaction is a very complex problem and solution of this problem is often obtained by using finite element method. However, this method takes a significant amount of computational time and memory. Therefore, an efficient computational model based on subdivision of the structure into building elements such as wall and floor slab elements, plane and three-dimensional joints and lintels, that could provide accurate results with significantly reduced computational time, is proposed in this study for the analysis three-dimensional structures subjected to dynamic load. The examples prove the efficiency and the computing possibilities of the model.
Communications for Statistical Applications and Methods
/
v.31
no.1
/
pp.105-127
/
2024
We propose recurrent neural network (RNN) methods for forecasting realized volatility (RV). The data are RVs of ten major stock price indices, four from the US, and six from the EU. Forecasts are made for relative ratio of adjacent RVs instead of the RV itself in order to avoid the out-of-scale issue. Forecasts of RV ratios distribution are first constructed from which those of RVs are computed which are shown to be better than forecasts constructed directly from RV. The apparent asymmetry of RV ratio is addressed by the Piecewise Min-max (PM) normalization. The serial dependence of the ratio data renders us to consider two architectures, long short-term memory (LSTM) and gated recurrent unit (GRU). The hyperparameters of LSTM and GRU are tuned by the nested cross validation. The RNN forecast with the PM normalization and ratio transformation is shown to outperform other forecasts by other RNN models and by benchmarking models of the AR model, the support vector machine (SVM), the deep neural network (DNN), and the convolutional neural network (CNN).
The Journal of Korean Institute of Next Generation Computing
/
v.14
no.5
/
pp.31-39
/
2018
Recently, there has been active studies to provide a user-friendly interface in a virtual reality environment by recognizing user hand gestures based on deep learning. However, most studies use separate sensors to obtain hand information or go through pre-process for efficient learning. It also fails to take into account changes in the external environment, such as changes in lighting or some of its hands being obscured. This paper proposes a hand gesture recognition method based on deep learning that is strong in external environments without the need for pre-process of RGB images obtained from general webcam. In this paper we improve the VGGNet and the GoogLeNet structures and compared the performance of each structure. The VGGNet and the GoogLeNet structures presented in this paper showed a recognition rate of 93.88% and 93.75%, respectively, based on data containing dim, partially obscured, or partially out-of-sight hand images. In terms of memory and speed, the GoogLeNet used about 3 times less memory than the VGGNet, and its processing speed was 10 times better. The results of this paper can be processed in real-time and used as a hand gesture interface in various areas such as games, education, and medical services in a virtual reality environment.
Jang Seong-Hyung;Shin Chang-Soo;Yoon Kwang-Jin;Suh Sang-Young;Shin Sung-Ryul
Geophysics and Geophysical Exploration
/
v.3
no.2
/
pp.39-47
/
2000
A great deal of computing time and a large computer memory are needed to solve wave equation in a large complex subsurface layers using the finite difference method. The computing time and memory can be reduced by decreasing the number of grid points per minimum wave length. However, the decrease of grids may cause numerical dispersion and poor accuracy. In this study we performed the grid dispersion analysis for several rotated finite difference operators, which was commonly used to reduce grids per wavelength with accuracy in order to determine the solution for the acoustic wave equation in frequency domain. The rotated finite difference operators were to be extended to 81, 121 and 169 difference stars and studied whether the minimum grids could be reduced to 2 or not. To obtain accuracy (numerical errors less than $1\%$) the following was required: more than 13 grids for conventional 5 point difference stars, 9 grids for 9 difference stars, 3 grids for 25 difference stars, and 2.7 grids for 49 difference stars. After grid dispersion analysis for the new rotated finite difference operators, more than 2.5 grids for 81 difference stars, 2.3 grids for 121 difference stars and 2.1 grids for 169 difference stars were needed. However, in the 169 difference stars, there was no solution because of oscillation of the dispersion curves in the group velocity curves. This indicated that the grids couldn't be reduced to 2 in the frequency acoustic wave equation. According to grid dispersion analysis for the determination of grid points, the more rotated finite difference operators, the fewer grid points. However, the more rotated finite difference operators that are used, the more complex the difference equation terms.
Recent improvements of satellite remote sensing sensors which are represented by hyperspectral imaging sensors and high spatial resolution sensors provide a large amount of data, typically several hundred megabytes per one scene. Moreover, increasing information exchange via internet and information super-highway requires the developments of more active service systems for processing and analysing of remote sensing data in order to provide value-added products. In this sense, an advanced satellite data processing system is being developed to achive high performance in computing speed and efficieney in processing a huge volume of data, and to make possible network computing and easy improving, upgrading and managing of systems. JAVA internet programming language provides several advantages for developing software such as object-oriented programming, multi-threading and robust memory managent. Using these features, a satellite data processing system named as GeoPixel has been developing using JAVA language. The GeoPixel adopted newly developed techniques including object-pipe connect method between each process and multi-threading structure. In other words, this system has characteristics such as independent operating platform and efficient data processing by handling a huge volume of remote sensing data with robustness. In the evaluation of data processing capability, the satisfactory results were shown in utilizing computer resources(CPU and Memory) and processing speeds.
The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.
Non-volatile RAM (NVRAM) has both characteristics of nonvolatility and byte addressability. In order to efficiently exploit this NVRAM in the file system layer, we proposed the MiNV (Metadata in NVram) file system in our previous research. MiNV file system maintains all the metadata in NVRAM while storing file data in NAND Flash memory. In this paper, we experimentally analyze the efficiency for the execution of garbage collection in the MiNV file system. Also, we quantify the file system performance gains obtained from efficient garbage collection. Experimental results show that garbage collection on the MiNV file system executes more efficiently that on YAFFS even though these file systems adopt exactly the same garbage collection policy. Specifically, the MiNV file system invokes the aggressive garbage collection mechanism less frequently than YAFFS. Additionally, the MiNV file system postpones the first execution of the aggressive garbage collection mechanism in our experiments. From the experiments, we verify that the efficiency of garbage collection leads to performance improvements of the MiNV file system.
The ${\Delta}\;V_{10}$ or 10-Hz flicker index, as a common method of measurement of voltage flicker severity in power systems, requires a high computational cost and a large amount of memory. In this paper, for measuring the ${\Delta}\;V_{10}$ index, a new method based on the Adaline (adaptive linear neuron) system, the FFT (fast Fourier transform), and the PSO (particle swarm optimization) algorithm is proposed. In this method, for reducing the sampling frequency, calculations are carried out on the envelope of a power system voltage that contains a flicker component. Extracting the envelope of the voltage is implemented by the Adaline system. In addition, in order to increase the accuracy in computing the flicker components, the PSO algorithm is used for reducing the spectral leakage error in the FFT calculations. Therefore, the proposed method has a lower computational cost in FFT computation due to the use of a smaller sampling window. It also requires less memory since it uses the envelope of the power system voltage. Moreover, it shows more accuracy because the PSO algorithm is used in the determination of the flicker frequency and the corresponding amplitude. The sensitivity of the proposed method with respect to the main frequency drift is very low. The proposed algorithm is evaluated by simulations. The validity of the simulations is proven by the implementation of the algorithm with an ARM microcontroller-based digital system. Finally, its function is evaluated with real-time measurements.
In recent years, semiconductor-based storage devices such as flash memory (SSDs) have been developed to high performance. In addition, a trend has been observed of optimally utilizing resources such as the central processing unit (CPU) and memory of the internal controller in the storage device according to the needs of the application. This concept is called In-Storage Processing (ISP). In a storage device equipped with the ISP function, it is possible to process part of the operation executed on the host system, thus reducing the load on the host. Moreover, since the data is processed in the storage device, the data transferred to the host are reduced. In this paper, we propose a method to optimize graph query processing by utilizing these ISP functions, and show that the optimized graph processing method improves the performance of the graph 500 benchmark by up to 20%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.