Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240 processors and a 102 GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA), developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and threedimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by using three GPUs, we succeeded in accelerating the 3D simulation 10 times.
Proceedings of the Korean Information Science Society Conference
/
2004.04a
/
pp.778-780
/
2004
This paper presents a computing system, called MEDICOS. that enables Multidisciplinary Design Optimization (MDO) technology for engineering design on distributed environments. In MDO, various legacy softwares have to be Integrated, so dynamic configuration and seamless coordination between these legacy softwares must be supported. MEDICOS is designed to address these issues by the Linda shared memory model-based design and the agent-based wrapper technology. A prototype system for engineering designs is developed and tested with designing a super high temperature vacuum furnace.
In these day, some of IT venders already were going to cloud computing market, as well they are going to expand their territory for the cloud computing market through that based on their hardware and software technology, making collaboration between hardware and software vender. Distributed file system is very mainly technology for the cloud computing that must be protect performance and safety for high levels service requests as well data store. This paper introduced distributed file system for cloud computing and how to use this theory such as memory database, Hadoop file system, high availability database system. now In the market, this paper define a very large distributed processing architect as a reference by kind of distributed file systems through using technology in cloud computing market.
Park, Ji-Woong;Kim, Joung-Joon;Yun, Jae-Kwan;Han, Ki-Joon
Journal of Korea Spatial Information System Society
/
v.7
no.1
s.13
/
pp.25-37
/
2005
Recently, with the development of wireless communications and mobile computing, interest about mobile computing is rising. Mobile computing can be regarded as an environment where a user carries mobile devices, such as a PDA or a notebook, and shares resources with a server computer via wireless communications. A mobile database refers to a database which is used in these mobile devices. The mobile database can be used in the fields of insurance business, banking business, medical treatment, and so on. Especially, LBS(Location Based Service) which utilizes location information of users becomes an essential field of mobile computing. In order to support LBS in the mobile environment, there must be an Embedded Spatial MMDBMS(Main-Memory Database Management System) that can efficiently manage large spatial data in spatial mobile devices. Therefore, in this paper, we designed and implemented the Embedded Spatial MMDBMS, extended from the HSQLDB which is an existing MMDBMS for PC, to manage spatial data efficiently in spatial mobile devices. The Embedded Spatial MMDBMS adopted the spatial data model proposed by ISO(International Organization for Standardization), provided the arithmetic coding method that is suitable for spatial data, and supported the efficient spatial index which uses the MBR compression and hashing method suitable for spatial mobile devices. In addition, the system offered the spatial data display capability in low-performance processors of spatial mobile devices and supported the data caching and synchronization capability for performance improvement of spatial data import/export between the Embedded Spatial MMDBMS and the GIS server.
Computing environments of Embedded Systems are different from those of desktop computers so that they have resource constraints such as CPU processing, memory capacity, power, and etc.. Thus, when a desktop S/W is ported into embedded systems, optimization should be seriously considered. In this paper, we investigate several S/W optimization techniques to be considered for porting H.263 encoder into a high performance DSP, TMS320C6711. Through experiments, it is found that optimization techniques employed can make a big performance improvement.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.1
/
pp.193-198
/
2020
The various uses of the Convolutional Neural Network technology are accelerating the evolution of the computing area, but the opposite is causing serious hardware performance shortages. Neural network accelerators, next-generation memory device technologies, and high-bandwidth memory architectures were proposed as countermeasures, but they are difficult to actively introduce due to the problems of versatility, technological maturity, and high cost, respectively. This study proposes DRAM-based main memory technology that enables read operations to be completed without waiting until the end of the refresh operation using pre-stored XOR bit values, even when the refresh operation is performed in the main memory. The results showed that the proposed technique improved performance by 5.8%, saved energy by 1.2%, and improved EDP by 10.6%.
Flash Translation Layer(FTL) which enables NAND Flash memory-based storage system to be used as a block device is designed considering only characteristics of NAND Flash memory. However, since FTL precesses I/O requests which survived against buffer replacement algorithm, FTL algorithm has tight relationship with buffer replacement algorithm. Therefore, if we do not consider both FTL and buffer replacement algorithms, it is difficult to predict the actual I/O performance of the computer systems that have Flash memory-based storage system. The necessity of FTL and buffer replacement algorithm co-design arises here. In this work, we implemented I/O performance evaluation tool, IPSiNS, which simulates both the buffer replacement and FTL algorithms, simultaneously.
Personal mobile devices equipped with non-volatile storage such as MP3 player, PMP, cellular phone, and USB memory require safety for the stored data on the devices. One of the safety requirements is secure deletion, which is removing stored data completely so that the data can not be restored illegally. In this paper, we study how to design the secure deletion on Flash memory, commonly used as storage media for mobile devices. We consider two possible secure deletion policy, named zero-overwrite and garbage-collection respectively, and analyze how each policy affects the performance of Flash memory file systems. Then, we propose an adaptive file deletion scheme that exploits the merits of the two possible policies. Specifically, the proposed scheme applies the zero-overwrite policy for small files, whereas it employs the garbage-collection policy for large files. Real implementation experiments show that the scheme is not only secure but also efficient.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.15
no.5
/
pp.125-133
/
2016
Data processing capacity and speed are rapidly increasing due to the development of hardware and software in recent time. As a result, data usage is geometrically increasing and the amount of data which computers have to process has already exceeded five-thousand transaction per second. That is, the importance of Big Data is due to its 'real-time' and this makes it possible to analyze all the data in order to obtain accurate data at right time under any circumstances. Moreover, there are many researches about this as construction of smart factory with the application of Big Data is expected to have reduction in development, production, and quality management cost. In this paper, system using In-Memory Data Grid for high speed processing is implemented in semiconductor process which numerous data occur and improved performance is proven with experiments. Implemented system is expected to be possible to apply on not only the semiconductor but also any fields using Big Data and further researches will be made for possible application on other fields.
This paper proposes a Big Data system for energy Big Data which is aggregated in real-time from industrial and public sources. The constructed Big Data system is based on Hadoop and the Spark framework is simultaneously applied on Big Data processing, which supports in-memory distributed computing. In the paper, we focus on Big Data, in the form of heat energy for district heating, and deal with methodologies for storing, managing, processing and analyzing aggregated Big Data in real-time while considering properties of energy input and output. At present, the Big Data influx is stored and managed in accordance with the designed relational database schema inside the system and the stored Big Data is processed and analyzed as to set objectives. The paper exemplifies a number of heat demand plants, concerned with district heating, as industrial sources of heat energy Big Data gathered in real-time as well as the proposed system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.