MEDICOS: An MDO-Enabling Dlstributed COmputing System

Shen Yi Jin®, Karp Joo Jeong, Jae Woo Lee, Jong Hwa Kim, Yu Xuan Jin
College of Information and Communication, Konkuk Univ., Seoul, Korea

MOOE &t 2&t AFRE ALH

240 "2, oM

2, AEL, 22

LRUSD BIELUS
skim@imc.konkuk.ac.kr jeongk@konkuk.ac.kr

Abstract

This paper presents a computing system, calied MEDICOS, that enables Multidisciplinary Design Optimization
(MDOQ) technology for engineering design on distributed environments. In MDO, various legacy softwares have to
be integrated, so dynamic configuration and seamless coordination between these legacy softwares must be
supported. MEDICOS is designed to address these issues by the Linda shared memory model-based design
and the agent-based wrapper technology. A prototype system for engineering designs is developed and tested

with designing a super high temperature vacuum furnace.

1. Introduction

Multidisciplinary Design Optimization (MDO) is crucial
for most engineering design because it allows us to
achieve a global optimal design decision among
mutually-conflicting local design decisions. The
challenging problem with MDO is how to coordinate or
integrate various types of commercial and research
prototype software systems on heterogeneous platforms
to interact towards a globally optimal solution. In MDO,
most of these systems are based on legacy softwares.
There are a number of distributed computing systems for
system coordination and integration, but they are not
designed for the support of legacy software in an
efficient and flexible way. MDO-Enabling Distributed
COmputing System (MEDICOS) is such a framework that
addresses these issues by shared memory model-based
Linda system and agent-based wrapper technology.

Linda is a memory model (called tuple space) that
consists of a collection of logical tuples. The Linda
model does not care how the multiple execution threads
in a Linda program what they compute, it deals only with
how these execution threads are created, and how they
can be organized into a coherent program[1]. This
feature for Linda model solved distribution, platform and
language independence problem for us. Components in
MDO framework are developed in various computer
languages and are widely spread on the network. By
taking advantage of the Linda model, existing legacy and
commercial softwares can be easily integrated.

Another core technology for MEDICOS is the
agent~based wrapper technology. Wrappers encapsulate
various legacy or commercial softwares by a
well-defined interface to the system (especially, the
middleware used in MEDICOS) and invoke them on
request.

As mentioned above, much effort has been made
before and many well-known MDO frameworks have
been developed up to now, They include iSIGHT, IMAGE,
and ModelCenter. Common drawbacks with these
frameworks are monolithic-based design in which
distributed computing facilities and MDO supports are

tightly-coupled. In the MEDICOS design, there is a
well-defined interface between MDO supports and
distributed computing middleware, and a commodity

middleware such as Java RMI and JINI can be used in
stead of the current Linda system.

2. Overview of MDO

MDO is a methodology for the design of complex
engineering systems and subsystems that coherently
exploits the coordination of mutually interacting

phenomena(2]. In most engineering design works, optimal
design decision is required among local decisions from
sub-design work which are often mutually conflicting
(e.g., to pursue an optimal decision for a certain local
design causes performance decrease in other local
designs). For example, in aircraft design, local designs
including propulsion analysis, heat conduction and
convection analyses wants to get to their local optimum
value while a giobal optimum solution is required for
achieving the global optimum decision for the entire
design. The MDO framework supports implementation and
execution of MDO applications and provide a set of
support services commonly needed in applications of this
type[3]. Four kernel technologies are comprehended in
MDO framework. They are MDO technology,
problem-specific technology, distributed computing
technology and system integration technology.

778

20049 % ¥33 B A3 & SUE=EF Vol 31, No. 1

integration

achnolog)

Figure 1: MDO Framework

Problem-specific technology corresponds to diverse
legacy or commercial softwares for the specific
engineering design. MDQ technology, including object
functions, optimize method and constraints, is used to
achieve final optimum solutions. Distributed computing
technology is a independent IT technology such as
distributed programming, remote procedure invocation and
parallel processing. The last technology, system
integration technology is an interdisciplinary technology
that makes the diverse software integration possible and
data transmission controllable. The challenge we are
facing is to support a framework that synthesis these
four technologies into an entire one. The technical detail
solutions we used will be discussed in the next section.

3. System Design

3.1 Design Approach
In our design approach, we use a fault tolerant version

of the shared memory-based Linda model, called
Persistent Linda (hereafter, shortly PLinda), whose
implementation is based on C++[4]. The Linda model
allows loosely coupled system integration which
facilitates dynamic configuration. In Linda, system

components can be easily integrated.

In addition, we use an agent-based wrapper technology
that turns legacy software systems into integratible
system components, It provides mechanisms for
invocation, input preparation, output postprocessing, and
data structure transformation,

3.2 Components

Major components of MEDICOS are: analysis modules,
optimization modules, CAD modules, DBMS modules,
visualization modules and GUI modules. Among these
modules, the GUI module is a little different from the
others, because for each specific product design. GUI will
be newly developed while other modules are relatively
fixed. This is a hint that GUI may have a certain
"knowledge" of the framework and may embed some
requisite functions. Wrappers shelter softwares to be
seamlessly integrated and invoke each modules at any
requested time. A management toolkit provides a clear
communication channel, monitoring and scheduling that
addresses dynamic configuration and automatic data
transference.

3.3 Architecture
MEDICOS has a strict layer—based architecture. Figure

2 shows the global architecture at the view of layer:

E
2
%
3

panbegto M Tiows

Figure 2 @ Layered Architecture

MEDICOS consists of three layers: distributed
middleware layer, wrapper/agent layer and application
layer. The distributed middleware layer based on the

PLinda supports loosely-coupled interactions among
system components, Due to the Linda model, these
interactions are independent of component locaiions,

invocation times, and underlying platforms.

The wrapper/agent layer performs the following: (1)
make transformation between XML-based standard data
formats in the shared memory and component-specific
data in working directories, (2) prepare input files and
invoke legacy software components, (3) detect the
termination of the execution. Wrappers and agents for
different system components communicate with the
distributed middleware[5].

Figure 3 shows the runtime structure of the system.

Figure 3 : Runtime Structure

Information Database
information of each

In this structure, Resource
manages the detailed management
module which is accessed via Register GUIL This
information enables us to control each module[6]. In
Management Toolkit, resource monitoring, automatic
wrapper generation, problem formulation, scheduler and
ID assignment services are provided. It also controls data
flow and selects correct data from data repository by
referring to the Resource Information Database,

3.4 Major System Operations

The major operations of MEDICOS is: module
registration, wrapper manufacture, problem formulation
and final optimization and analysis result retrieve.

registration
All the modules (resources) that are willing to be
integrated must registrate to the resource information
database through an registration GUI beforehand. The

779

20044 £ B Hb3he] B S EEEA Vol 31, No. 1

registrated information is in the form of XML documents.
For example, the analysis module output file XML is like
below:
<output type = "file">

<numQfFile = "1">

<file name="out_1.dat" location="D:WdataWoutput" size="2M" />

<{template name="out_O1_tem.dat" location = "C:Wtemplate" />
</numOfFile>
</output>

wrapper manufacture

Users can monitor the resources registered on the
system and chose the module that they wants. Once a
module is selected, the resource monitor enable the
Wrapper Manufacturer to make the wrapper for the
selected module automatically by referring to the
Resource Information Database.

formulation
Since modules are selected, users can formulate
problems by dragging and drawing from graphic user
interface. Basically, parallel processing is supported by
PLinda in our system. Formulation Script enables the 1D
Assigner to assign process and data ID and generate the
schedule by Scheduler that proceed the formulation.

data retrieve
When outputs are generated, final results can be
retrieved by visualization module or GUI module. During
the procedure time, all the data are safely kept in the
Data Repository and controlled by the Management
Toolkit that tells the wrappers and agents the correct
data needed.

4. System Implementation and Experiments Data

In the implementation, we developed a prototype of a
super high temperature vacuum furnace. In this prototype
development, GUI module, analysis module, optimum
module, DBMS module, CAD module and visualization
module are the working entities that create real data for
this system. For some reason, registration and parallel
processing are not supported yet. Persistent Linda works
as the distributed middleware. The modules are located
independently in a distributed environment and integrated
into MECODIS. The DB-Optimize working interface is as
below

——

Figare 4 : MEDICOS implementation

During implementation, we found concurrency problem
and solved it by the state check mechanism.
When a resource is required while it is in use, it is

needed to allocate the resource for every user without
conflict. The solution we used is to check the state of
the module each time it is required by users., That is, a
resource state check process is supplied. The state of
the required module is informed to users. So they can
decide to use the resource at present or not,

The experiments are made based on MEDICOS. The
final results visualized by Formula One are shown in
figure 5:

EE T

[T
AT
-

e LY

Figure 5: optimum result - by data grid and graph
5. Conclusions and Future Work

We have designed an MDO-enabling distributed
computing framework and implemented a prototype for it.
In our system, legacy and commercial softwares are
seamless integrated and communicate unimpededly.
During implementation, we found some problems either.

First of all, security problem is not concerned
throughout the design and development process. Because
it is difficult to judge reliability of legacy codes. So we
assume that all the modules that in MEDICOS is safe and
reliable.

Then, in the current system, resource registration is
not implemented either. As the result, wrappers are not
automatically manufactured but are coded by developer
directly and enabled manually. That is, the dynamic
configuration is not addressed yet.

What we are going to concentrate upon is solving
these problems concerned above and make MEDICOS an
essential tool for engineering design.

Reference

[1] Nicholas Carriero and David Gelernter How to write
parallel programs: a first course Massachusetts Institute
of Technology, second printing, 1991

{2] nttp//mdob.larc.nasa.gov/
[31 A. O. Sales and J.
Requirements for MDO

AJAA-98-4740 1998

[4] Karpjoo Jeong, Bin Li, Denis Shsha, Peter Wyckoff
PLinda/C++ and Fortran77 User's Guide p8 1996

[5] Joon Sang, Yoo Development of a Collaborative and
Distributed Computing for Multidisciplinary Design
Optimization p 15 Konkuk University 2003

[6) Davis S. Linthicum Next Generation Application
Integration p207 Addison-Wesley

C. Townsend Framework
Application Development

780

