• Title/Summary/Keyword: in-field

Search Result 70,358, Processing Time 0.104 seconds

Radiotherapy for Early Glottic Carinoma (조기 성문암 환자에서의 방사선치료)

  • Kim, Won-Taek;Nam, Ji-Ho;Kyuon, Byung-Hyun;Wang, Su-Gun;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.295-302
    • /
    • 2002
  • Purpose : The Purpose of this study was to establish general guidelines for the treatment of patients with early glottic carcinoma (T1-2N0M0), by assessing the role of primary radiotherapy and by analyzing the tumor-related and treatment-related factors that have an influence on the treatment results. Materials and Methods : This retrospective study was composed of 80 patients who suffered from early glottic carcinoma and were treated by primary radiotherapy at Pusan National University Hospital, between August 1987 and December 1996. The distribution of patients according to T-stage was 66 for stage T1 and 14 for stage T2. All of the patients were treated with conventional radical radiotherapy using a 6MV photon beams, a total tumor dose of $60\~75.6\;Gy$ (median 68.4 Gy), administered in 5 weekly fractions of $1.8\~2.0\;Gy$. The overall radiation treatment time was from 40 to 87 days, median 51 days. All patients were followed up for at least 3 years. Univariate and multivariate analysis was done to identify the prognostic factors affecting the treatment results. Results : The five-years survival rate was $89.2\%$ for all patients, $90.2\%$ for T1 and $82.5\%$ for T2. The local control rate was $81.3\%$ for all patients, $83.3\%$ for T1 and $71.4\%$ for T2. However, when salvage operations were taken into account, the ultimate local control rate was $91.3\%,\;T1\;94.5\%,\;T2\;79.4\%$, reprosenting an increase of $8\~12\%$ in the local control rate. The voice preservation rate was $89.2\%,\;T1\;94.7\%,\;T2\;81.3\%$. Fifteen patients suffered a relapse after radiotherapy, among whom 12 patients underwent salvage surgery. We included T-stage, tumor location, total radiation dose, fraction size, field size and overall radiation treatment time as potential prognostic factors. T-stage and overall treatment time were found to be statistically significant in the univariate analysis, but in the multivariate analysis, only the over-all treatment time was found to be significant. Conclusion : The high cure and voice preservation rates obtained when using a procedure, comprising a combination of radical radiotherapy and salvage surgery, may make this the treatment of choice for patients with early glottic carcinoma. However, the prognostic factors affecting the treatment results must be kept in mind, and more accurate treatment planning and further optimization of the radiation dose are necessary.

Studies on the Herbicidal Properties of Pyrazolate (제초제(除草劑) Pyrazolate의 작용특성(作用特性)에 관한 연구(硏究))

  • Ryang, H.S.;Han, S.S.;Kim, K.H.
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.174-189
    • /
    • 1983
  • Experiments were conducted to evaluate the herbicidal characteristics of pyrazolate [4-(2,4-dichloro benzoyl)-1,3-dimethylpyrazol-5-yl-p-toluene-sulphonate] in greenhouse and lowland rice field. Pyrazolate controlled effectively most of annual weeds and such perennial weeds as Sagittaria pygmaea MIQ., Potamogeton distinctus A. BENN, Sagittaria trifolia L., Cyperus serotinus ROTTB, and Scirpus hotarui OHWI., whereas Eleocharis kuroguwai OHWI. was tolerent to pyrazolate. Although pyrazolate was applied at 2 to 10 days after transplanting, there was no difference in weed control The weeding effect was not influenced by percolation, depth of water and soil type. No difference in crop injury of rice was found with various levels of seedling age, transplanting depth, percolation, depth of water, soil type and time of application. When combined with butachlor, the mixture gave the same effect on rice phytotoxicity and weed control as pyrazolate alone did. Pyrazolate moved 1 to 2cm downward in lowland soil regardless of soil type and percolation. The herbicidal activity of pyrazolate persisted in soil for 60 to 90 days, depending on soil type, percolation and presence of soil microorganism.

  • PDF

Status of Paddy Weed Flora and Community Dynamics in Korea (한국(韓國)의 논잡초분포(雜草分布) 및 군락현황(群落現況))

  • Kim, Soon-Chul
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.223-245
    • /
    • 1983
  • Nationwide weed survey of paddy rice field conducted in 1981 and 1971 was compared and determined major dominant weed community types distributed by province. Based on the similarity coefficients between 1971 and 1981 the floristic composition based on the degree of dominance was greatly dissimilar while kind of weed flora were not much differed. Degree of dominance were concentrated to perennial weeds in 1981 while these were at animal weeds in 1971. The moat important 10 weed species and their dominance in 1981 were Monochoria vaginalis Presl.(22.2%), Sagittaria pygmaea Miquel(17.5%), S. trifolia L.(9.0%), Poramogeton distinctus Benn.(9.0%), Cyperus serotinus Rottb.(8.5%), Rotala indica Koehne(6.0%), Aneilema japonica Kunth(4.4%), Lindernia procumbens Philcox(3.9%), Eleocharis kuroguwai Ohwi(3.4%) and Ludwigia proarrara Roxb(3.0%), respectively while these for 1971 were R. indica(34.5%), Eleocharia acicularis Roem, et Schult (11.9%), M. vaginalis(11.1%), Cyperua difformis L.(8.7%), Echinochloa crus-galli Beauv.(6.9%), L. procumbens(3.3%), P. distinctus(3.1%), A. Japonica (2.4%), E. kuroguwai(1.8%) and P. hydropiper(1.8%), respectively. Weed occurrence was also closely related with soil type, cropping pattern and cultural practices. Particularly, the occurrence of P. distincrus was negatively correlated with the degree of land utilization. Weed community types dafined by two-dimensional ordination analysis were 11 for Jeonnam province, 9 for Gyeoaggi, Gangweon, Chungbuk and Gyeongnam provinces, 8 for Jeonbuk and Gyeongbuk provinces, 7 for Chungnam province and 4 for Jeju province, respectively.

  • PDF

Functional Assessment of Gangcheon Replacement Wetland Using Modified HGM (수정 수문지형학적 방법을 적용한 강천 대체습지의 기능평가)

  • Kim, Jungwook;Lee, Bo Eun;Kim, Jae Geun;Oh, Seunghyun;Jung, Jaewon;Lee, Myungjin;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.318-326
    • /
    • 2017
  • Riverine wetlands were reduced and damaged by dredging of rivers and constructing parks in wetlands by Four Rivers Project from 2008 to 2013. Therefore, replacement wetlands were constructed for the compensation of wetland loss by the government. However, It is not enough to manage replacement wetlands. In order to manage the wetlands efficiently, it is necessaty to assess the functions of the wetlands and to manage them according to their functions. Here we performed functional assessments for a replacement wetland called Gangcheon wetland using the modified HGM approach. Hydrological, biogeochemical, animal habitat, and plant habitat functions for the wetland were assessed. To assess the functions, we collected informations for modified HGM approach from the monitored hydrologic data, field survey, published reports and documents for before and after the project, and hydraulic & hydrologic modeling. As the results of the assessment, the hydrological function for the replacement wetland showed 65.5% of the reference wetland, biogeochemical function showed 66.6%, plant habitat function showed 75%, and animal habitat function showed 108.3%. Overall, Gangcheon wetland function after the project was reduced to 78.9% of the function before the project. The decrease in hydrological function is due to the decrease of subsurface storage of water. And the decrease in biogeochemical & pland habitat functions is due to the removal of sandbank around the Gangcheon wetland. To compensate for the reduced function, it is necessary to expand the wetland area and to plant the various vegetation. The modified HGM used in this study can take into account the degree of improvement for replacement wetlands, so it can be used to efficiently manage the replacement wetlands. Also when the wetland is newly constructed, it will be very useful to assess the change of function of the wetland over time.

U-Pb(SHRIMP) and K-Ar Age Dating of Intrusive Rocks and Skarn Minerals at the W-Skarn in Weondong Deposit (원동 중석 스카른대에서의 관입암류와 스카른광물에 대한 U-Pb(SHRIMP) 및 K-Ar 연대)

  • Park, Changyun;Song, Yungoo;Chi, Se Jung;Kang, Il-Mo;Yi, Keewook;Chung, Donghoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.161-174
    • /
    • 2013
  • The geology of the weondong deposit area consists mainly of Cambro-Ordovician and Carboniferous-Triassic formations, and intruded quartz porphyry and dyke. The skarn mineralized zone in the weondong deposit is the most prospective region for the useful W-mineral deposits. To determine the skarn-mineralization age, U-Pb SHRIMP and K-Ar age dating methods were employed. The U-Pb zircon ages of quartz porphyry intrusion (WD-A) and feldspar porphyry dyke (WD-B) are 79.37 Ma and 50.64 Ma. The K-Ar ages of coarse-grained crystalline phlogopite (WD-1), massive phlogopite (WDR-1), phlogopite coexisted with skarn minerals (WD-M), and vein type illite (WD-2) were determined as $49.1{\pm}1.1$ Ma, $49.2{\pm}1.2$ Ma, $49.9{\pm}3.6$ Ma, and $48.3{\pm}1.1$ Ma, respectively. And the ages of the high uranium zircon of hydrothermally altered quartz porphyry (WD-C) range from 59.7 to 38.7 Ma, which dependson zircon's textures affected by hydrothermal fluids. It is regarded as the effect of some hydrothermal events, which may precipitate and overgrow the high-U zircons, and happen the zircon's metamictization and dissolution-reprecipitation reactions. Based on the K-Ar age datings for the skarn minerals and field evidences, we suggest that the timing of W-skarn mineralization in weondong deposit may be about 50 Ma. However, for the accurate timing of skarn mineralization in this area, the additional researches about the sequence of superposition at the skarn minerals and geological relationship between skarn deposits and dyke should be needed in the future.

Using Synoptic Data to Predict Air Temperature within Rice Canopies across Geographic Areas (종관자료를 이용한 벼 재배지대별 군락 내 기온 예측)

  • 윤영관;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.199-205
    • /
    • 2001
  • This study was conducted to figure out temperature profiles of a partially developed paddy rice canopy, which are necessary to run plant disease forecasting models. Air temperature over and within the developing rice canopy was monitored from one month after transplanting (June 29) to just before heading (August 24) in 1999 and 2001. During the study period, the temporal march of the within-canopy profile was analyzed and an empirical formula was developed for simulating the profile. A partially developed rice canopy temperature seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures. On sunny days, air temperature at the height of maximum leafages was increased at the same rate as the ambient temperature above the canopy after sunrise. Below the height, the temperature increase was delayed until the solar noon. Air temperature near the water surface varied much less than those of the outer- and the upper-canopy, which kept increasing by the time of daily maximum temperature observed at the nearby synoptic station. After sunset, cooling rate is much less at the lower canopy, resulting in an isothermal profile at around the midnight. A fairly consistent drop in temperature at rice paddies compared with the nearby synoptic weather stations across geographic areas and time of day was found. According to this result, a cooling by 0.6 to 1.2$^{\circ}C$ is expected over paddy rice fields compared with the officially reported temperature during the summer months. An empirical equation for simulating the temperature profile was formulated from the field observations. Given the temperature estimates at 150 cm above the canopy and the maximum deviation at the lowest layer, air temperature at any height within the canopy can be predicted by this equation. As an application, temperature surfaces at several heights within rice fields were produced over the southwestern plains in Korea at a 1 km by 1km grid spacing, where rice paddies were identified by a satellite image analysis. The outer canopy temperature was prepared by a lapse rate corrected spatial interpolation of the synoptic temperature observations combined with the hourly cooling rate over the rice paddies.

  • PDF

Effects of Dissolved Oxygen and Depth on the Survival and Filtering Rate and Pseudofeces Production of a Filter-feeding Bivalve (Unio douglasiae) in the Cyanobacterial Bloom (남조류 대발생 환경에서 수심과 용존산소 변화에 따른 담수산 이매패(말조개)의 생존율, 여과율 및 배설물 생산)

  • Park, Ku-Sung;Kim, Baik-Ho;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.50-60
    • /
    • 2008
  • We performed the experiment to evaluate the effect of different DO concentrations (0.5, 4.5 and 9.0 $mgO_2L^{-1}$) and water depths (20, 50 and 80 cm) on the filtering rate, mortality, and pseudifeces production of Unio douglasiae against the cyanobacterial bloom (mainly Microcystis aeruginosa). A solitary-living bivalve U. douglasiae was collected in the upstream region of the North Han River (Korea). The harvested mussels were carefully transferred to the laboratory artificial management system, which was controlled temperature $(18{\pm}2^{\circ}C)$, flow rate (10L $h^{-1}$), food $(Chlorella^{TM})$, sediment (pebble and clay), light intensity (ca. $20{\mu}mol$ photons), and photocycle (12 L : 12 D). In the field observation, the mussel mortality was significantly correlated with water temperature, pH and DO concentration (P<0.05). The mortality was decreased with water depth; 65, 90, 80% of mortality at 20, 50, 80 cm water-depth, respectively. Filtering rate (FR) showed the highest value at 50 cm water depth, and thereby the concentration of chlorophyll-${\alpha}$ decreased continuously by 94% of the control at the end of the experiment. In contrast, FR decreased by 34% of the initial concentration at 20 cm water depth. Over the given water-depth range, the mussel FR ranged from $0.15{\sim}0.20L\;gAFDW^{-1}hr^{-1}$ during the 18hrs of experiment, and thereafter, they appeared to be approximately 0.11, 0.26 and 0.30 L $gAFDW^{-1}hr^{-1}$ at 20, 50 and 80cm water depth, respectively. FR was highest with the value of 0.46L $gAFDW^{-1}hr^{-1}\;at\;0.5mgO_2 L^{-1}$ at the early stage of the experiment, while it increased with DO concentration. Maximum pseudofaeces production was 11.2 mg $gAFDW^{-1}hr^{-1}\;at\;9.0mgO_2L^{-1}$. Our results conclude that U. douglasiae has a potential to enhance water quality in eutrophic lake by removing dominant cyanobacteria, but their effects vary with environmental parameters and the water depth at which they are located.

Effects of Different Nitrogen Levels and Planting Densities on the Quality and Quantity of 'Nunkeunheugchal' Rice (시비량과 재식밀도 변화에 따른 '눈큰흑찰'의 품질 및 수량변화)

  • Bae, Hyun Kyung;Oh, Seong Hwan;Seo, Jong Ho;Hwang, Jung Dong;Kim, Sang Yeol;Oh, Myung Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.118-123
    • /
    • 2017
  • 'Nunkeunheugchal' is a waxy black rice variety that has a large embryo. The quality of black rice depends on the anthocyanin content of the rice seed coat, which is mainly determined by cultivation environment. Factors that affect the anthocyanin content include nitrogen level, planting density, transplanting date and harvesting date. This study was carried out to investigate the optimum black rice cultivation conditions by examining the effects of different nitrogen levels and planting densities. An initial study was conducted to determine the optimum nitrogen level in which four levels of nitrogen were applied to the field (0, 4, 8 and 12 kg/10a). As the nitrogen contents were increased up to 8 kg/10a, there was a concomitant increase in rice yields. However, nitrogen levels greater than 8 kg/10a, the yield was maintained at the same level. Correlation analysis indicated that the optimum nitrogen level for maximum yield was 9.6 kg/10a. In addition, anthocyanin levels showed a trend similar to that of yield, with correlation analysis indicating that the optimum nitrogen level for maximum anthocyanin content is 10.6 kg/10a.On the basis of these results, a second study was conducted to determine the optimum combination of planting density and nitrogen level. The planting densities investigated were $30{\times}12$, $30{\times}14$, $30{\times}16$ and nitrogen levels were 7, 9 and 12 kg/10a. A high planting density ($30{\times}12cm$) was shown to produce higher numbers of tillers and yield. As calculated in the first study, a nitrogen level of 9 kg/10a shown to produce the highest anthocyanin content and yield. Collectively, the results of this study indicate that a planting density of $30{\times}12cm$ and a nitrogen level of 9 kg/10a is the optimal combination in terms of maximizing both rice yield and anthocyanin content.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.