DOI QR코드

DOI QR Code

U-Pb(SHRIMP) and K-Ar Age Dating of Intrusive Rocks and Skarn Minerals at the W-Skarn in Weondong Deposit

원동 중석 스카른대에서의 관입암류와 스카른광물에 대한 U-Pb(SHRIMP) 및 K-Ar 연대

  • Park, Changyun (Department of Earth System Sciences, Yonsei University) ;
  • Song, Yungoo (Department of Earth System Sciences, Yonsei University) ;
  • Chi, Se Jung (Korea Institute of Geoscience and Mineral Resources) ;
  • Kang, Il-Mo (Korea Institute of Geoscience and Mineral Resources) ;
  • Yi, Keewook (Division of Earth and Environmental Science, Korea Basic Science Institute) ;
  • Chung, Donghoon (Department of Earth System Sciences, Yonsei University)
  • Received : 2013.08.26
  • Accepted : 2013.09.27
  • Published : 2013.09.30

Abstract

The geology of the weondong deposit area consists mainly of Cambro-Ordovician and Carboniferous-Triassic formations, and intruded quartz porphyry and dyke. The skarn mineralized zone in the weondong deposit is the most prospective region for the useful W-mineral deposits. To determine the skarn-mineralization age, U-Pb SHRIMP and K-Ar age dating methods were employed. The U-Pb zircon ages of quartz porphyry intrusion (WD-A) and feldspar porphyry dyke (WD-B) are 79.37 Ma and 50.64 Ma. The K-Ar ages of coarse-grained crystalline phlogopite (WD-1), massive phlogopite (WDR-1), phlogopite coexisted with skarn minerals (WD-M), and vein type illite (WD-2) were determined as $49.1{\pm}1.1$ Ma, $49.2{\pm}1.2$ Ma, $49.9{\pm}3.6$ Ma, and $48.3{\pm}1.1$ Ma, respectively. And the ages of the high uranium zircon of hydrothermally altered quartz porphyry (WD-C) range from 59.7 to 38.7 Ma, which dependson zircon's textures affected by hydrothermal fluids. It is regarded as the effect of some hydrothermal events, which may precipitate and overgrow the high-U zircons, and happen the zircon's metamictization and dissolution-reprecipitation reactions. Based on the K-Ar age datings for the skarn minerals and field evidences, we suggest that the timing of W-skarn mineralization in weondong deposit may be about 50 Ma. However, for the accurate timing of skarn mineralization in this area, the additional researches about the sequence of superposition at the skarn minerals and geological relationship between skarn deposits and dyke should be needed in the future.

원동지역은 스카른형 다중금속 광상으로서, 최근에는 회중석을 포함하는 텅스텐 광체의 유망광구로 주목받고 있다. 본 연구는 관입암체와 스카른 광물에 대한 연대측정을 통하여 스카른 형성 시기에 대한 지질연대학적 정보를 제공하고자 한다. 원동 지역의 층서는 석탄기와 트라이아스기, 캠브리아기와 오르도비스기의 층으로 이루어져있다. SHRIMP U-Pb 연대측정으로 원동지역 일대에 분포하고 있는 관입암류인 석영반암($79.37{\pm}0.94$ Ma)과 장석반암암맥($50.64{\pm}0.44$ Ma)의 정치고결시기를 결정하였다. K-Ar 연대측정으로 거정질의 금운모($49.1{\pm}1.1$ Ma), 괴상의 금운모($49.2{\pm}1.2$ Ma), 스카른광물과 공생하는 금운모($49.9{\pm}3.6$ Ma), 그리고 열수변질작용의 산물인 일라이트($48.3{\pm}1.1$ Ma)의 생성시기를 밝혀내었다. 열수 변질된 석영반암에서의 SHRIMP U-Pb 연대는 59.7~38.7 Ma까지 다양한 연대분포를 보이는데, 저어콘의 조직과 관련하여 메타믹티제이션(metamictization) 받은 저어콘 조직에서는 Pb 손실이 발생하여 연대 신뢰도가 떨어지는 반면, 용해-침전작용을 받은 부분의 연대 값은 동위원소 재평형 작용의 가능성이 있어 또다른 열수변질시기 혹은 화성활동시기에 대한 정보를 제공할 수 있다. 연대측정 결과와 광물 공생관계, 그리고 야외조사에서 확인된 석영반암 내 혹은 균열대에 발달해 있는 스카른용액 침투흔적으로 볼 때, 연구지역에서의 중석 스카른 광화시기는 약 50 Ma일 가능성이 높지만, 스카른 광체 선후관계 및 장석반암과 스카른 광체의 지질학적 연관관계에 대한 연구가 추가적으로 이루어져야 할 필요가 있다.

Keywords

References

  1. Ahrens, L.H. (1965). Some observations on the uranium and thorium distributions in accessory zircon from granitic rocks. Geochimica et Cosmochimica Acta, 29, 711-716. https://doi.org/10.1016/0016-7037(65)90064-5
  2. Chi, S.J., Kang, I.-M., Kim, Y.U., Kim, E.-J., Kim, I.J., Park, S,-W., Lee, J.H., Lee, J.S., Lee, H.Y., Jin, K., Heo, C.-H., and Hong, Y.-K. (2011) Evaluation of development possibility for the security of industrial mineral resources (Cu, Pb, Zn, Au etc) on the domestic mines: Korea Institute Geoscience and Mineral Resources, GP2010-024-2011(2), 33-135.
  3. Cho, D.L. and Kwon, S.T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of crustal thickness. Journal of the Geological Society of Korea, 30, 41-61.
  4. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.-M., Kim, C.S., and Park, M.-E. (2005a) Cretaceous epithermal gold–silver mineralization and geodynamic environment, Korea. Ore Geology Reviews, 26, 115-135. https://doi.org/10.1016/j.oregeorev.2004.10.005
  5. Choi, S.-G., Kwon, S.-T., Ree, J.-H., So, C.-S., and Pak S.J. (2005b) Origin of Mesozoic gold mineralization in South Korea. The Island Arc, 14, 102-114. https://doi.org/10.1111/j.1440-1738.2005.00459.x
  6. Choi, S.-G., Pak, S.J., Kim, S.W., Kim, C.S., and Oh, C.-W. (2006) Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting. Economic and Environmental Geology, 39, 567-581.
  7. Choi, S.-G. and Pak, S.J. (2007) The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications. Economic and Environmental Geology, 40, 517-535.
  8. Farrar, E., Clark, A.H., and Kim, O.J. (1978) Age of the Sangdong tungsten deposits, Republic of Korea, and its bearing on metallogeny of the southern Korean Peninsula. Economic Geology, 76, 547-566.
  9. Geisler, T., Rashwan, A.A., Rahn, M., Poller, U., Zwingmann, H., Pidgeon, R.T., Schleicher, H., and Tomaschek, F. (2003) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67, 485-508. https://doi.org/10.1180/0026461036730112
  10. Geisler, T., Schaltegger, U., and Tomaschek, F. (2007) Re-equilibration of Zircon in Aqueous Fluids and Melts. Elements, 3, 43-50. https://doi.org/10.2113/gselements.3.1.43
  11. Hanchar, J.M. and Hoskin, P.W.O. (2003). Zircon, 53, 500 p. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia.
  12. Hwang, D.H. and Lee, J.Y. (1998) Ore genesis of the Wondong polymetallic mineral deposits in the Taebaegsan Metallogenic Province. Economic and Environmental Geology, 31, 375-388.
  13. Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T., and Ogata, A. (1991). Argon isotope analysis by a newly developed mass spectrometric system for K-Ar dating. Mineralogical journal, 15, 203-221. https://doi.org/10.2465/minerj.15.203
  14. Lee, J.H. (2011) The results of drilling in weondong mine area, the Taebaegsan mineralized district, Republic of Korea. Economic and Environmental Geology, 44, 313-320. https://doi.org/10.9719/EEG.2011.44.4.313
  15. Ludwig, K.R. (2003) User's manual for Isoplot 3.00: a geochronogical toolkit for Mirosoft Excel. Berkeley Geochronology, Center Special Publication, p.47.
  16. Maruyama, S., Isozaki, Y., Kimura, G., and Terabayashi, M. (1997) Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750Ma to the present. Island Arc, 6, 121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  17. Paces, J.B. and Miller, J.D. (1993) Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research 98, 13997-14013. https://doi.org/10.1029/93JB01159
  18. Park, H.-I., Chang, H.W., and Jin, M.S. (1988) K-Ar ages of mineral deposits in the Taebaeg Mountain district. The Journal of Korean Institute of Mining Geology, 21, 57-67.
  19. Sato, K., Shibata, K., Uchiumi, S., and Shimazaki, H. (1981) Mineralization age of the Shinyemi Zn-Pb- Mo deposit in the Taebaegsan area, Southern Korea. Mining Geology, 31, 333-336
  20. Shore, M. and Fowler, A.D. (1996). Oscillatory zoning in minerals; a common phenomenon. The Canadian Mineralogist, 34(6), 1111-1126.
  21. Utsunomiya, S., Valley, J.W., Cavosie, A.J., Wilde, S. A., and Ewing, R.C. (2007) Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. Chemical Geology, 236, 92-111. https://doi.org/10.1016/j.chemgeo.2006.09.003
  22. Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. In: Mickibben, M.A., Shanks III, W.C., Ridley, W.I. (eds.), Applications of Micro Analytical Techniques to Understanding Mineralizing Processes. Reviews of Economic Geology, 7, 1-35. https://doi.org/10.1080/07474938808800138
  23. Xu, X.S., Zhang, M., Zhu, K.Y., Chen, X.M., and He, Z.Y. (2012) Reverse age zonation of zircon formed by metamictisation and hydrothermal fluid leaching. Lithos, 150, 256-267. https://doi.org/10.1016/j.lithos.2011.12.014
  24. Yun S. and Silberman M.L.(1979) K-Ar geochronology of igneous rocks in the Yeonhwa-Ulchin zinc-lead district and southern margin of the Taebaegsan basin, Korea. Journal of the Geological Society of Korea, 15, 89-99.

Cited by

  1. Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea vol.451, 2017, https://doi.org/10.1016/j.chemgeo.2017.01.011
  2. Spectral characteristics of minerals associated with skarn deposits: a case study of Weondong skarn deposit, South Korea vol.20, pp.2, 2016, https://doi.org/10.1007/s12303-015-0043-0
  3. Skarn zonation and rock physical properties of the Wondong Fe-Pb-Zn polymetallic deposit, Korea vol.19, pp.4, 2015, https://doi.org/10.1007/s12303-015-0017-2
  4. Oscillatory zoning in skarn garnet: Implications for tungsten ore exploration vol.89, 2017, https://doi.org/10.1016/j.oregeorev.2017.08.003
  5. Recrystallization and hydrothermal growth of high U–Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration vol.260, 2016, https://doi.org/10.1016/j.lithos.2016.05.026
  6. Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.97
  7. Scheelite geochemistry of the Sangdong W-Mo deposit and W prospects in the southern Taebaeksan metallogenic region, Korea vol.24, pp.6, 2020, https://doi.org/10.1007/s12303-020-0005-z