• Title/Summary/Keyword: in-circuit test

Search Result 1,629, Processing Time 0.03 seconds

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

Weight Lightening of HUMS Housing for Small Aircraft by Using FEM and Taguchi Method (유한요소법 및 다구찌 기법에 의한 소형항공기용 HUMS 하우징 경량화)

  • Kim, Jin-Su;Yoon, Dae-Won;Park, Tae-Sang;Jeong, Jae-Eun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1045-1055
    • /
    • 2013
  • It is true that the dependency on import is currently high in case of the safety checkup system of domestic airplanes, and it is at the point of time that localization of HUMS for small airplanes is required. In this study, the design factors were selected for the lightweight of HUMS for small airplanes by using Pro-Engineer which is a design tool and Abaqus. 9 models were made through experiment plans with Taguchi method for this, and the each model for weight lightening was selected through vibration analysis and shock analysis while in operation with experiment profile values. After fabricating HUMS, it was verified that as a result of experiment with the same profile values as the analysis, there was similarity between the analyzed values and values of the experiment. As a result of performing weight lightening which is the purpose of the study, electronic performance for small airplanes is assured and a design plan reducing 15 % weight compared to the targeted weight was deduced. Besides, it could be verified that the light weight model satisfied the maximum allowable displacement value of PCB[printed circuit board] and accordingly satisfied electronic properties of HUMS. In this study, the reliability of a product was certified through the result of an experiment on ground. If the reliability of HUMS were verified through a test flight in the future, it is considered that it would make a big contribution to localization of aerospace electronic equipment.

A Study on the Development of Smart Control Valve (스마트 컨트롤 밸브 개발에 관한 연구)

  • Choi, Young-Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.582-590
    • /
    • 2019
  • As Korea's low fertility and aging progress, Korea is facing a social change such as an increase of one generation by entering an aging society that has raised 14% of the population. An effective way to prevent a gas fire accident caused by an increase in one generation in an aging society is to install a control valve to forcibly shut off the gas after a set time. In this study, we developed a valve that can be opened and closed by rotating the valve left and right by transmitting power to the worm gear and the helical gear by using a motor by pressing the switch. It is easy to assemble and inspect by developing a dedicated valve that is easy to attach and detach. It was developed to enhance competitiveness by reducing cost by reducing the number of parts and product size. In addition, through endurance test, it was developed to be used for more than 9 years by repeating ON / OFF once every 12 seconds so that it can operate stably for 10,000 times for 34 hours. The instrument and PCB were designed using solid works and Altium Designer tools. Firmware development was developed in IAR Embedded Workbench environment.

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Development of a Microwave Level Meter Using YIG-VCO for Industrial Process (YIG-VCO를 사용한 산업용 마이크로파 거리계의 개발)

  • 김정목;임종수;전중창;김태수;안광호;이승학
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2000
  • In this paper, we have designed a microwave level meter based on the FM-CW radar theory using a YIG-tuned oscillator (YTO). YTO has an excellent frequency linearity, so a linearizer circuit is not necessary for the level meter. It is shown that interference signals reflected from nearby obstacles can be removed by using a digital band-pass filter. An FIR band-pass filter is designed using the Kaiser window. The distance measurement has been performed in the outdoor test field. The measurement data have been obtained for the range of 1~40m with 1m step, and the results show that the standard deviation of the measured data is 2.33 cm. The level meter manufactured in this study can be applied usefully in the industrial facilities which are not accessible easily, for example, to measure the level of molten metal in the iron and steel company.

  • PDF

Development of Electronic Limit Switch for the Drive Unit of Incore Detector System Application (노내 핵계측 계통 구동기기의 전자식 한계스위치 개발)

  • 박종범;양승권;이상효
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, we study a cause of malfunction of switch to control drive motor in DFMS(Digital Flux Mapping System) which can measure incore neutron flux of the nuclear plant, and develope a method to solve this problem. DFMS has the type of generating contact signal by mechanical switch lever, which is operated whenever thimble detector inserted or withdrawed through thimble Guide Tube. However the characteristics of the lever tend to be changed by mechanical degrade or bad environment and the lever finally generates errotic contact signal. Therefore we installed electric coil ass'yin the outside of Guide Tube instead of mechanical switch assy's. In addition we applied resonance effect to control circuit and installed condenser in the input of power supply to protect noise and interference. After completion of this improvement, we tested this improved device repetitively under the various conditions. In conclusion, we identified the generation of the desired contact signal and the prevention of detector failure through plant surveillance test during normal plant operation.

  • PDF

Endpoint Detection Using Hybrid Algorithm of PLS and SVM (PLS와 SVM복합 알고리즘을 이용한 식각 종료점 검출)

  • Lee, Yun-Keun;Han, Yi-Seul;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.701-709
    • /
    • 2011
  • In semiconductor wafer fabrication, etching is one of the most critical processes, by which a material layer is selectively removed. Because of difficulty to correct a mistake caused by over etching, it is critical that etch should be performed correctly. This paper proposes a new approach for etch endpoint detection of small open area wafers. The traditional endpoint detection technique uses a few manually selected wavelengths, which are adequate for large open areas. As the integrated circuit devices continue to shrink in geometry and increase in device density, detecting the endpoint for small open areas presents a serious challenge to process engineers. In this work, a high-resolution optical emission spectroscopy (OES) sensor is used to provide the necessary sensitivity for detecting subtle endpoint signal. Partial Least Squares (PLS) method is used to analyze the OES data which reduces dimension of the data and increases gap between classes. Support Vector Machine (SVM) is employed to detect endpoint using the data after PLS. SVM classifies normal etching state and after endpoint state. Two data sets from OES are used in training PLS and SVM. The other data sets are used to test the performance of the model. The results show that the trained PLS and SVM hybrid algorithm model detects endpoint accurately.

Examination on the Mounting Status of Cigar Lighter Receptacle for Vehicles and Analysis of its Tracking Characteristics (차량용 시가 잭의 장착 실태조사 및 트레킹 특성 분석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • This study examined the mounting status of cigar lighter receptacles for vehicles and analyzed the tracking phenomenon that occurs when foreign material entered a cigar lighter receptacle to obtain data for the analysis of accident investigation. Regardless of the vehicle's output, cigar lighter receptacles are mounted in a vehicle horizontally, vertically, or at tilting or inclined angle. The tilting type cigar lighter receptacle is much easier to use but current leakage resulting from foreign materials (coffee, beverages, water, etc.) falling into the cigar lighter receptacle may cause a fire to start. This study used a vehicle battery (DC 12V) as a power supply for the tracking test and configured its circuit in the same way as that of an electrical device in a vehicle. The tracking phenomenon that occurred in the standby mode of the vehicle exhibited a fine flame and an irregular occurrence of smoke. While this tracking phenomenon was occurring, the leakage current and the reaching distance of the flame were measured to be approximately 930mA and $20{\sim}50cm$, respectively. It is thought that the resultant flame may ignite toluene, dust, cigarettes, etc. It was observed that as the tracking progressed, the internal metal socket melted and a hole was created, the surface of which was also severely carbonized. In addition, the electrical resistance of the carbonized conductive path was measured to be approximately $30{\Omega}$. It is thought that this much resistance may cause local heating when leakage current flows and could ignite any nearby flammable material.