• Title/Summary/Keyword: in-band interference

Search Result 730, Processing Time 0.032 seconds

An Advanced MCL Method for a Sharing Analysis of Mobile Communication Systems beyond 3G (차세대 이동통신 시스템의 주파수 공유분석을 위한 개선된 MCL 방법)

  • Chung Woo-Ghee;Yoon Hyun-Goo;Jo Han-Shin;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.307-316
    • /
    • 2006
  • In this paper the analytical method, namely advanced minimum coupling loss(A-MCL), was proposed in order to analyze the coexistence of OFDM-based systems beyond 3G(B3G) with point-to point(PP) fixed service(FS) microwave systems. Our proposed method is based on a power spectral density(PSD) analysis. So it can be easily applicable to analyze the coexistence of OFDM-based systems B3G using flexible spectrum usage(FSU) with other systems, where the conventional MCL method cannot allocate transmit power partially to some subcarriers which overlap the band of a victim system. By applying the conventional MCL method and the A-MCL method, interfering power levels at the receiver of a interfered system are respectively calculated. A-MCL can calculate interference power more accurately than MCL by the maximum value of 4.5 dB. Therefore it can be concluded that our prosed method, namely A-MCL, is applicable to a sharing analysis of OFDM-based systems B3G.

The study of improving the performance of lower direction finding ability due to the interfered phase difference of circular array Antennas (원형배열안테나의 위상간섭에 의한 방향탐지 성능저하 개선연구)

  • Chung, Jae-Woo;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.535-539
    • /
    • 2010
  • This paper include to study DoA(Direction of Arrival) for radio collection and monitoring system. The direction finding calculated by applying the CVDF (Correlation Vector Direction Finding) algorithm for the five circular dipole antenna over V / UHF band. To improve the accuracy of direction finding by applying CVDF algorithm needs to obtain ideal phase difference each antennas. However, a circular array antenna phase difference pattern may be distorted on a specific frequency band or to particular direction. The effect of installing each array antennas circularly and the effect of the interference of center pole (located in the center of a circular array antenna mount) may make the distortion of phase pattern. If you use an active antenna instead of passive antenna to obtain good sensitivity, you would measure the more distortion. This paper propose how to change combination of antennas to measure the phase in real-time and how to use antenna beam patterns for minimizing the degradation phenomena at applying simple CVDF algorithm and increasing the direction finding capability.

  • PDF

Radio location algorithm in microcellular wide-band CDMA environment (마이크로 셀룰라 Wide-band CDMA 환경에서의 위치 추정 알고리즘)

  • Chang, Jin-Weon;Han, Il;Sung, Dan-Keun;Shin, Bung-Chul;Hong, Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2052-2063
    • /
    • 1998
  • Various full-scale radio location systems have been developed since ground-based radio navigation systems appeared during World War II, and more recently global positioning systems (GPS) have been widely used as a representative location system. In addition, radio location systems based on cellular systems are intensively being studied as cellular services become more and more popular. However, these studies have been focused mainly on macrocellular systems of which based stations are mutually synchronized. There has been no study about systems of which based stations are asynchronous. In this paper, we proposed two radio location algorithms in microcellular CDMA systems of which base stations are asychronous. The one is to estimate the position of a personal station at the center of rectangular shaped area which approximates the realistic common area. The other, as a method based on road map, is to first find candidate positions, the centers of roads pseudo-range-distant from the base station which the personal station belongs to and then is to estimate the position by monitoring the pilot signal strengths of neighboring base stations. We compare these two algorithms with three wide-spread algorithms through computer simulations and investigate interference effect on measuring pseudo ranges. The proposed algorithms require no recursive calculations and yield smaller position error than the existing algorithms because of less affection of non-line-of-signt propagation in microcellular environments.

  • PDF

Single Outlier Removal Technology for TWR based High Precision Localization (TWR 기반 고정밀 측위를 위한 단일 이상측정치 제거 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.350-355
    • /
    • 2017
  • UWB (Ultra Wide Band) refers to a system with a bandwidth of over 500 MHz or a bandwidth of 20% of the center frequency. It is robust against channel fading and has a wide signal bandwidth. Using the IR-UWB based ranging system, it is possible to obtain decimeter-level ranging accuracy. Furthermore, IR-UWB system enables acquisition over glass or cement with high resolution. In recent years, IR-UWB-based ranging chipsets have become cheap and popular, and it has become possible to implement positioning systems of several tens of centimeters. The system can be configured as one-way ranging (OWR) positioning system for fast ranging and TWR (two-way ranging) positioning system for cheap and robust ranging. On the other hand, the ranging based positioning system has a limitation on the number of terminals for localization because it takes time to perform a communication procedure to perform ranging. To overcome this problem, code multiplexing and channel multiplexing are performed. However, errors occur in measurement due to interference between channels and code, multipath, and so on. The measurement filtering is used to reduce the measurement error, but more fundamentally, techniques for removing these measurements should be studied. First, the TWR based positioning was analyzed from a stochastic point of view and the effects of outlier measurements were summarized. The positioning algorithm for analytically identifying and removing single outlier is summarized and extended to three dimensions. Through the simulation, we have verified the algorithm to detect and remove single outliers.

Cooperative Node Selection for the Cognitive Radio Networks (인지무선 네트워크를 위한 협력 노드 선택 기법)

  • Gao, Xiang;Lee, Juhyeon;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.287-293
    • /
    • 2013
  • Cognitive radio has been recently proposed to dynamically access unused-spectrum. The CR users can share the same frequency band with the primary user without interference to each other. Usually each CR user needs to determine spectrum availability by itself depending only on its local observations. But uncertainty communication environment effects can be mitigated so that the detection probability is improved in a heavily shadowed environment. Soft detection is a primary user detection method of cooperative cognitive radio networks. In our research, we will improve system detection probability by using optimal cooperative node selection algorithm. New algorithm can find optimal number of cooperative sensing nodes for cooperative soft detection by using maximum ratio combining (MRC) method. Through analysis, proposed cooperative node selection algorithm can select optimal node for cooperative sensing according to the system requirement and improve the system detection probability.

A study on improving the low capability of direction finding by interfered phase difference at circular array antennas (원형 배열안테나의 위상간섭에 의한 방향탐지 성능저하 개선 연구)

  • Chung, Jae-Woo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2157-2163
    • /
    • 2010
  • This paper includes the study of DOA(Direction of Arrival). CVDF(Correlative Vector Direction Finding) algorithm using at the phase difference each antenna needs to obtain ideal sinusoidal phase difference patterns. However, the phase difference patterns of circular array antennas may be interfered on a specific frequency band and to particular angle. The effect of installing each array antenna circularly and the effect of the interference by center pole (located in the center of a circular array antennas) may distort the phase difference patterns. This paper propose how to change the combination of antennas to measure phase difference patterns in real-time and how to use antenna beam patterns for minimizing the degradation phenomena with old CVDF algorithm. According to the test result, the capability of direction finding is improved.

HDMI Resolution Control of Smart Platform with WiFi Channel Analysis (WiFi 채널분석에 따른 스마트 플랫폼의 HDMI 해상도 조정)

  • Hong, Sung-Chan;Kang, Min-Goo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, we proposed the novel algorithm which controls the resolution of the HDMI(High Definition Multimedia Interface) by the channel estimation from WiFi-AP(Access Point) in the ISM(Industry-Science-Medical) band. The 2.4 and 5 GHz channel models are widely used since they have identical RF property as RSSI(Received Signal Strength Indication). Especially, the performance degradation of signal-transmission and streaming of WiFi will be occurred by the co-channel interference between AP(Access Point) and increased number of smart devices. Therefore, the optimization scheme of video format timing was designed by HDMI-CEC(Consumer Electronics Control) which considers the transmission speed of radio channel. The HDMI resolution, video quality of home-gateway and digital TV and the decision of PIP position can be maintained by the protocols between smart devices and DLNA(Digital Living Network Alliance) via proposed technique.

A Conductive-grid based EMI Shielding Composite Film with a High Heat Dissipation Characteristic (전도성 그리드를 활용한 전자파 흡수차폐/방열 복합소재 필름)

  • Park, Byeongjin;Ryu, Seung Han;Kwon, Suk Jin;Kim, Suryeon;Lee, Sang Bok
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.175-181
    • /
    • 2022
  • Due to the increasing number of wireless communication devices in mmWave frequency bands, there is a high demand for electromagnetic interference (EMI) shielding and heat dissipating materials to avoid device malfunctions. This paper proposes an EMI shielding composite film with a high heat dissipation characteristic. To achieve this, a conductive grid is integrated with a polymer-based composite layer including magnetic and heat dissipating filler materials. A high shielding effectiveness (>40 dB), low reflection shielding effectiveness (<3 dB), high thermal conductivity (>10 W/m·K), thin thickness (<500 ㎛) are simultaneously achieved with a tailored design of composite layer compositions and grid geometries in 5G communication band of 26.5 GHz.

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal

  • Wonggeeratikun, A.;Noppanakeepong, S.;Leelaruji, N.;Hemmakorn, N.;Moriya, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1648-1653
    • /
    • 2003
  • The paper studies effect of quasi-periodic or airplane flutter phenomenon on television broadcasting signal. Airplane flutter is a very important problem. It causes the receiving antenna to receive both direct signal by the Tx (Transmitter antenna) and reflected signal scattered by the airplane with phase delay. The sum of two signals results in fading, sometime collapse and distortion of picture on TV screen. We performed measurement and modeling this phenomenon on TV signal when the airplane flew across and range Tx and Rx (Receiver antenna). The frequency 60.75MHz (Aural frequency of CH3) is used under tests. A single scatter multipath model is introduced. It is used to duplicate some of the measured data and show the dependence of power variation on the airplane fluttering. The fluctuation of the airplane flutter phenomenon was calculated to be around 2-4dB. The Yaki antenna is used for improving airplane flutter problem because it can make high gain and high directivity.

  • PDF

A Sliding Window-Based Energy Detection Method under Noise Uncertainty for Cognitive Radio Systems (Cognitive Radio 시스템에서 불확실한 잡음 전력을 고려한 슬라이딩 윈도우 기반 에너지 검출 기법)

  • Kim, Young-Min;Sohn, Sung-Hwan;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1105-1116
    • /
    • 2008
  • Cognitive radio is one of the most effective techniques to improve the spectrum utilization efficiency. To implement the cognitive radio, spectrum sensing is considered as the key functionality because only counting on it, can the secondary users identify the spectrum holes and utilize them efficiently without causing interference to primary users. Generally, there are several spectrum sensing methods; the most common and simplest method is energy detection. However, the conventional energy detection has some disadvantages, which are caused by noise, especially, uncertain noise power leads to degradation of energy detector. In this paper, to solve this problem, we proposed sliding window-based energy detection method which can devide the frequency band of primary signal and noise using sliding window to estimate the power of primary user without the noise effect and achieve the better performance. It can calculate the energy of primary user only and can detect the primary signal. The simulation result shows that our proposed method outperforms conventional one.