• Title/Summary/Keyword: in vitro spermatogenesis

Search Result 25, Processing Time 0.02 seconds

In vivo and in vitro sperm production: An overview of the challenges and advances in male fertility restoration

  • Zahra Bashiri;Seyed Jamal Hosseini;Maryam Salem;Morteza Koruji
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.3
    • /
    • pp.171-180
    • /
    • 2024
  • Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of spermatogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candidates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be approved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaffolds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these techniques may be clinically available in upcoming decades.

Fine Structural Study of Coelomic Solitary Spermatogenesis in Urechis unicinctus (개불 (Urechis unicinctus) 체강에서의 단위집단 정자형성(Solitary Spermatogenesis)에 관한 미세구조 연구)

  • Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.107-119
    • /
    • 2002
  • Early spermatocytes of U. unicinctus are found in cluster floating in the coelomic fluid. The spermatocytes in a cluster form a syncytium or cytoplasmic mass, but there are no indications that the cytoplasmic mass is a component of a somatic cell. This work suggested that this type of spermatogenesis can be subordinated to solitary spermatogenesis in the sense excluding structural and functional support of a somatic cell for sperm developments. The solitary spermatogenesis in U. unicinctus is different in appearances and developmental details of sperm organelles and stage distributions from that of localized spermatogenesis. The acrosomal rudiments and centrioles can be observed in the early single cells of spermatogonia and clearly disclosed in the primary spermatocyte. In the stage of secondary spermatocyte, the acrosomal precursor and the centrioles begin to move to each cytoplasmic poles. The polarities of the organelles are attained at stage of spermatids. The spermatocytes and spermatids are arranged circumferentially along the cytoplasmic mass in which some amorphological cytoplasmic components are included. The spermatids reveal to be detached from the cytoplasmic mass into coelomic fluid. It suggests that the spermatogenesis are progressed in support of coelomic fluid, and the fact take into consideration that the spermatogenic cells can be in vitro cultured without somatic cells and with supplements of coelomic fluid.

Expression profile of spermatogenesis associated genes in male germ cells during postnatal development in mice

  • Ahn, Jin Seop;Ryu, Hyun-Sung;Jung, Sang-Eun;Shin, Beom-Jin;Won, Jong-Hyun;Um, Tea Gun;Oh, Huijo;Kim, Seo-Hee;Ryu, Buom-Yong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.289-296
    • /
    • 2020
  • Spermatogonial stem cells are self-renewal and differentiate into sperm in post-pubertal mammals. There exists a balance between the self-renewal and differentiation in the testes. Spermatogonial stem cells make up only 0.03% of testicular cells in adult mice. These cells maintain sperm production by differentiating after puberty. Therefore, analyzing the expression of genes associated with spermatogenesis is critical for understanding differentiation. The present study aimed to establish the postnatal period of cells in relation to spermatogenesis. To study the expression of differentiated and undifferentiated marker genes in enriched spermatogonial stem cells, in vitro culture was performed and cells from pup (6-8-day-old) and adult (4-months-old) testicular tissues were isolated. As a result, undifferentiated genes, Pax7, Plzf, GFRa1, Etv5 and Bcl6b, were highly increased in cultured spermaotogonial stem cells compared with pup and adult testicular cells. On the other hands, differentiated gene, c-kit was highly increased in adult testicular cells, Also Stra8 gene was highly increased in pup and adult testicular cells. This study provides a better understanding of spermatogenesis-associated gene expression during postnatal periods.

Expression of Stage-Specific Genes on the Cultured Spermatogenic Cells Obtained from Prepubertal Porcine Testis

  • Song, Sang-Jin;Kim, Jung-Ho;Min, Dong-Mi;Park, Yong-Seog;Koong, Mi-Kyung;Seo, Ju-Tae;Lee, Hoon-Taek;Chung, Kil-Saeng
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.97-97
    • /
    • 2002
  • Achieving of in vitro development for mammalian premature spermatogenic cells are very difficult. In-vitro culture of spermatogenic cells were then initiated in an effort to try to study in vivo spermatogenesis and to understand its molecular events. Recently, the morphogenetic changes of spermatocytes or spermatid by in-vitro culture system were achieved. (omitted)

  • PDF

Ankrd7, a Novel Gene Specifically Expressed in Sertoli Cells and Its Potential Roles in Sertoli Cell Maturation

  • Shi, Yu-Qiang;Du, Lian-Cai;Wang, Qing-Zhong;Han, Chun-Fang
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.199-203
    • /
    • 2009
  • The somatic Sertoli cells play an essential role in testis determination and spermatogenesis by providing nutrition and structural support. In the current study, we report on the novel Ankrd7 gene that contains five ankyrin repeat domains. This gene was specifically expressed in Sertoli cells and was regulated in a maturation-dependent manner. Its expression was restricted to testicular tissue, and its mRNA could be detected in testes at as early as 14 dpp (days post partum) using RT-PCR analysis. In both testicular tissue sections and in vitro cultured Sertoli cells, the Ankrd7 protein was localized to the nucleus of the Sertoli cell. Immunohistochemistry and immunocytochemistry investigations showed that the protein was detectable in testicular tissues at 20 dpp, at which time Sertoli cells were gradually differentiating into their mature cellular form. These results suggest that Ankrd7 is probably involved in the process of Sertoli cell maturation and in spermatogenesis.

Simple Classification of Male Mouse Germ Cells using Hoechst 33258 Staining (Hoechst 33258 Staining을 이용한 웅성 생쥐 성세포의 간편 분류)

  • Kim, Kyoung Guk;Park, Young Sik
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.213-218
    • /
    • 2015
  • In the study for a differentiation and development of spermatogonial cells, the researchers should commonly require a simple, fast and reasonable method that could evaluate the developmental stage of male germ cells without any damage and also relentlessly culture them so far as a cell stage aiming at experimental applications. For developing the efficient method to identify the stage of sperm cells, the morphological characteristics of sperm cells were investigated by staining the cells with blue fluorescent dye Hoechst 33258, and a criterion for male germ cell classification was elicited from results of the previous investigation, then the efficiency of the criterion was verified by applying it to assort the germ cells recovered from male mice in age from 6 to 35 days. As morphological characteristics, spermatogonia significantly differed from spermatocytes in size, appearance and fluorescent patches of nucleus, and spermatids could also be distinguished from spermatozoa by making a difference in the volume and shape of nucleus and the shape and fluorescence of tail. Aforesaid criterion was applicable for classifying in vitro cultured sperm cells by verifying its efficiency and propriety for assorting the stages of testicular germ cells. However, the fluorescent staining showed that germ cells in mouse testis should be dramatically differentiated and developed at 21 days and 35 days of age, which were known as times of sexual puberty and maturity in male mice, respectively. In conclusion, the results indicated that this simple criterion for sperm cell classification using fluorescence staining with Hoechst 33258 may be highly efficient and reasonable for spermatogenesis study.

Study on germline transmission by transplantation of spermatogonial stem cells in chicken

  • Lee, Young-Mok;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.43-58
    • /
    • 2006
  • As a bioreactor, bird has proved to be most efficient system for producing useful therapeutic proteins. More than half of the egg white protein content derives from the ovalbumin gene with four other proteins(lysozyme, ovomucoid, ovomucin and conalbumin) present at levels of 50 milligrams or greater. And the naturally sterile egg also contains egg white protein at high concentration allowing for a long shelf life of recombinant protein without loss in activity. In spite of these advantages, transgenic procedures for the bird have lagged far behind because of its complex process of fertilized egg and developmental differences. Recently, a system to transplant mouse testis cells from a fertile donor male to the seminiferous tubules of an infertile recipient male has been developed. Spermatogenesis is generated from transplanted cells, and recipients are capable of transmitting the donor haplotype to progeny. After transplantation, primitive donor spermatogonia migrate to the basement membrane of recipient seminiferous tubules and begin proliferating. Eventually, these cells establish stable colonies with a characteristic appearance, which expands and produces differentiating germ cells, including mature spermatozoa. Thus, the transplanted cells self-renew and produce progeny that differentiate into fully functional spermatozoa. In this study, to develop an alternative system of germline chimera production that operates via the testes rather than through developing embryos, the spermatogonial stem cell techniques were applied. This system consisted of isolation and in vitro-culture of chicken testicular cells, transfer of in vitro-maintained cells into heterologous testes, production of germline chimeras and confirmation of germline transmission for evaluating production of heterologous, functional spermatozoa.

  • PDF

Testicular Cycles in the Korean Frogs: Annual Spermatogenic Patterns, Seasonal Changes in the Steroidogenic Competence, and Responsiveness Gonadotropins in vitro

  • Go, Seon-Gun;Gang, Hae-Muk;Kim, Jeong-U;Gwon, Hyeok-Bang
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 1997
  • Using three species of Korean frogs (Rana dybowskii, R. rugosa and R. nigromaculata), the annual spermatogenic pattern, the seasonal changes in the steroidogenic competence, and responsiveness of testis to gonadotropins in terms of testosterone secretion in vitro were examined. The spermatogenic pattern of R. dybowskii was classified as a discontinuous type since spermatogenesis stops completely after spawning in late winter (February) until mid-summer (July). In contrast, the pattern of R. nigromaculata and R. rugosa was classified as a potent continuous type since sperm was always present in the seminiferous tubules all year round. In all three species, the levels of testicular testosterone and that of testosterone secreted by testis following in vitro culture were very low in late summer (August), but increased thereafter until winter (hibernation period). Interestingly, responsiveness of testis in vitro to gonadotropins in terms of testosterone secretion increased markedly in November (early hibernation period). Specifically, bullfrog LH was more effective than FSH in stimulating the secretion of testosterone by frog testis in vitro during hibernation period. This fact suggests that testosterone secretion by testis during hibernation is at least regulated by the pituitary gonadotropin rather than environmental factors. Taken together, the data presented here suggest that testicular cycles of three species of Korean frogs are closely linked to their females breeding cycles, and are eventually controlled by various environmental cues.

  • PDF

Effects of Organic Solvents on Mucus Penetration Distance, Motility and Survival Rate of Human Sperm in vitro (수종의 유기용제가 사람 정자의 점액 침투능, 운동성과 생존율에 미치는 영향)

  • Yoo Dong-Chul;Choi Dal-Woong
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.177-182
    • /
    • 2004
  • Alcohol consumption and exposure to endocrine disruptors and industrial solvents have been implicated in impaired spermatogenesis, increase in the incidence of malformed sperm and decrease in the percentage of moving sperm. The aim of this study was to determine and compare the direct effects of some organic solvents(bisphenol A; BPA, dibutyl phthalate; DBP, formaldehyde; HCHO, dimethylsulphoxide; DMSO, ethanol) on mucus penetration distance, motility and survival rate of human sperm in vitro. Semen samples from 3 health subjects were prepared using swim-up method and 0.0005-0.5% organic solvents were added to the test medium. BPA, DBP, HCHO and DMSO produced significant decreases in the motility and survival rate with a different potency. The most potent inhibition of mucus penetration distance, motility and survival rate was observed after exposure to HCHO. A concentration of 0.0005% HCHO significantly inhibited sperm motility. When ethanol m.: added directly to sperm, at concentrations equivalent to that in serum after heavy drinking, these damaging effects were lowest compared with other solvents. Present study shows that each compound has different toxic potency to human sperm and we need special caution for the use of HCHO.