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Introduction 

In recent decades, spermatogonial stem cell (SSC)-based ap-
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Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic 
treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life 
for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of sper-
matogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs 
to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candi-
dates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has 
been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be ap-
proved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaf-
folds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and 
clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these tech-
niques may be clinically available in upcoming decades.
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proaches to overcoming infertility caused by gonadotoxic therapy 
have become an important topic of investigation. The increasing sur-
vival rates of childhood cancer have drawn attention to the effects of 
gonadotoxic treatments on future fertility [1]. Unfortunately, sperm 
cryopreservation is not an ideal option for prepubertal boys who 
have not yet started to produce sperm. However, prespermatogonia, 
or SSCs that are responsible for initiating spermatogenesis at puber-
ty, exist in prepubertal testicular tissue (TT); thus, cryopreservation of 
TT containing SSCs can preserve their reproductive potential [2]. 
Several medical centers worldwide currently use this technique and 
offer patients the option of freezing testicular biopsies before admin-
istering gonadotoxic therapy [3]. In addition, some centers admit pa-
tients who suffer from genetic or developmental disorders associat-
ed with prepubertal germ cell loss [4]. Currently, two major experi-
mental protocols to restore fertility are being investigated: (1) SSC or 



TT transplantation and (2) SSC or TT culture [5]. 
The hypothetical purpose of preserving TT from biopsies is to al-

low for tissue autotransplantation in adulthood after the disease pe-
riod. Maintaining interactions between the germ cells and their sup-
porting somatic cells enables SSCs to regain differentiation within 
their natural niche [6]. Subsequently, these preserved SSCs or tissue 
fragments can be engrafted on a three-dimensional (3D) substrate 
by TT engineering. These 3D-culture systems provide a suitable mi-
croenvironment for cell attachment and specific growth factors for 
testicular regeneration [7]. The emergence of advanced bioengi-
neered systems has offered new hope for maintaining male fertility 
through the development of functional male germ cells. Although 
SSC-based therapies provide an opportunity to restore fertility [8], 
technical and ethical barriers have limited the ability to complete 
spermatogenesis, and more efforts are required to establish a reli-
able culture system for clinical use. 

Although some studies have focused on in vitro spermatogenesis 
resulting in mature gametes, none have found a sufficiently effective 
technique for differentiating human SSCs into functional sperm [9]. 
Despite the promising results obtained in recent years, further re-
search is required to develop a therapeutic tool that will provide pre-
pubertal boys and men with azoospermia the chance of fertility. This 
brief review highlights the next steps required to transform experi-
mental approaches into clinical practice and emphasizes the current 
achievements and future challenges of fertility preservation in pre-
pubertal boys and patients with azoospermia.

 

TT transplantation 

TT transplantation involves the implantation of TT into various 
body sites, such as the testis, scrotum, and ectopic tissues [10]. One 
potential benefit of TT transplantation is the re-introduction of SSCs 
into the patient’s natural extracellular matrices. After TT transplanta-
tion, spermatogenesis can be induced through the systemic regula-
tion of hormones, nutrition, and oxygen supply. Revascularization is 
also promoted in the TT grafts, which in turn generates mature 
sperm. The successful transplantation of TT, with subsequent off-
spring following intracytoplasmic sperm injection, was first reported 
in mice by Shinohara et al. [11] and Honaramooz et al. [12] in 2002, 
then in rat models [13], and later in higher mammals such as pigs, 
monkeys, and macaques [2,14-17]. 

The other option for sustaining fertility is transplantation of TT into 
experimental animals. The SSCs differentiate into sperm via the TT 
implanted in animal models, and then those cells are returned to the 
patient. However, no authentic cases of completed spermatogenesis 
using immature human TT xenografts have been reported [18]. This 
procedure is not yet authorized in clinical settings due to the sub-

stantial risk that germ cells can be contaminated by unidentified 
host tissue viruses such as retroviruses, as well as the endocrine dif-
ferences between donor and recipient [12,19,20]. 

To date, numerous attempts to induce the maturation of human 
TT in vivo have been associated with only limited proliferation of 
SSCs. After the transplantation of TT, hypoxia and ischemic stress 
lead to tissue necrosis or activation of the apoptotic pathway [21], 
and ischemia-reperfusion may damage the SSCs’ niche as a result. 
Recent studies have succeeded in revascularizing testicular grafts by 
encapsulating the tissue or by applying molecular supplements such 
as angiogenic agents and antioxidants. These functionalized grafts 
have shown better outcomes [22]. 

Overall, the TT grafting technique has led to successful spermato-
genesis in a range of animal models, but is still not an efficient clini-
cal practice model because of the possibility of cancer cells spread-
ing. Therefore, research aimed at improving the efficacy of tissue 
transplantation is still ongoing, and future studies must consider the 
significant variables affecting the survival rate of transplanted TT. 

SSC transplantation 

Since they can proliferate and differentiate, SSCs can restore fertili-
ty after being injected into the rete testis and ductuli afferents. A 
mouse model was used to evaluate SSC autotransplantation for the 
first time in 1994 [23], and promising results have been reported in 
other species since then [24-26]. Many studies have confirmed SSC 
migration to recipient seminiferous tubules and the formation of 
small colonies in those tubules after the transplantation of human 
SSCs into mouse testis [27,28]. However, the differentiation of auto-
transplanted SSCs into sperm has not been successful in humans. In 
autotransplantation, there is an inherent risk of reinfecting the pa-
tient with cancer cells and reintroducing the disease [10]. 

Attempts have been made with cell transplantation to exclude 
cancer cells from the testicular cell suspension by using fluores-
cence-activated cell sorting, magnetic-activated cell sorting [29,30], 
smart nanoparticles [31-33], and microfluidic devices [34]. Despite 
the current advancements, however, more reliable diagnostic tech-
niques are required. Furthermore, because there are few SSCs in the 
testis, sufficient quantities must be created by in vitro proliferation for 
a successful treatment. The two major limitations in grafting efficien-
cy include the low rate of cell proliferation in vitro and the absence of 
a standardized procedure with a high success rate [35]. 

Furthermore, the appearance of normal spermatogenesis after 
transplantation does not necessarily indicate normal functionality of 
the SSCs. These offspring may exhibit abnormal DNA methylation 
and low reproduction rates [36], which are probably due to the prob-
lems and inefficiencies of the SSC transplantation technique. The 
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blood-testis barrier (BTB) can also be another major barrier in SSC 
transplantation. Singh et al. [37] investigated the high levels of glial 
cell-derived neurotrophic factor (GDNF) produced by immature Ser-
toli cells that resulted in increased SSC proliferation and significantly 
larger colonies in immature mice testes without the BTB.

To summarize, removing cancer cells from testicular cell suspen-
sions using specific culture conditions for the proliferation of SSCs 
and addressing the safety issues related to potential cell modification 
in the culture are concerns that should be addressed before clinical 
use [25]. 

In-laboratory sperm production using stem cells 

To take advantage of assisted reproductive technologies, an infer-
tile person must produce at least a few functional gametes. However, 
germ cells are not fully available in some azoospermia people, such 
as those with Sertoli-cell-only syndrome. Therefore, researchers have 
investigated the process of multipotent/pluripotent stem cell differ-
entiation to produce functional sperm in vitro [38,39]. These studies 
have shown significant potential in animal models, but differences 
between human and other animal germ cells have prevented their 
widespread use in humans [40]. Several new studies are planned or 
currently underway to use stem cell therapy to treat male infertility 
[39,41]. Previous studies have reported that embryonic stem cells 
(ESCs) and induced pluripotent stem cells can be differentiated into 
germ cells in rodents, monkeys, and humans [42-44]. In studies by 
Hayashi et al. [42] and Cyranoski [45], sperm-like cells generated from 
mouse ESCs in a step-by-step process were injected into oocytes to 
produce offspring. Recently, two research groups produced sperma-
tozoon-like cells from human ESCs, which were employed to treat 
azoospermic males [44,46]. Irie et al. [46] and Sasaki et al. [44] differ-
entiated human ESCs into primordial germ cells (PGCs) with a gene 
expression pattern similar to nascent PGCs. Dong et al. [47] differenti-
ated mouse ESCs into male germ cells using retinoic acid and placed 
them in special culture conditions to induce spermatogonial cell dif-
ferentiation. After 6 days, differentiation of the cells was confirmed by 
evaluation of the acrosin gene [47]. In 2021, nonhuman primate ESCs 
were differentiated into spermatid-like cells by Khampang et al. [48] 
for the first time. Pronucleus formation was observed after microin-
jection of the spermatid-like cells into rhesus macaque mature oo-
cytes. After artificial activation, they observed embryonic divisions, 
from the one-cell zygote stage to expanded blastocysts [48]. 

Mesenchymal stem cells (MSCs) are adult stem cells with the poten-
tial to enhance the efficiency of fertility restoration methods like SSC 
or TT transplantation and maintain fertility [48-58]. In 2006, Nayernia 
et al. [59] first reported that MSCs could differentiate into germ cells 
and express pre-meiotic germ cell markers. Shlush et al. [49] treated 

MSCs with retinoic acid, GDNF, putrescine, and leukemia inhibitory 
factor in a cell culture in vitro study. After 3 weeks, large flat cells and 
small round cells showed a morphology similar to Sertoli cells and 
germ cells. A xenotransplantation assay showed haploid cells with a 
flagellum-like structure that expressed meiotic markers and markers 
associated with spermatid cells [49]. However, these stem cell-based 
investigations have yet to document the production of morphological 
sperm. Since studies using transplantation or offspring production in 
humans cannot be confirmed for obvious ethical reasons, a different 
approach is required to verify the potential of human SSCs. It is also 
worth noting that a thorough examination for chromosomal abnor-
malities and epigenetic changes should be made to ensure that stem-
cell-derived cells have normal genomes [60,61].

 

In vitro maturation of TTs or SSCs 

Since SSC implantation into cultured testicular fragments is diffi-
cult and demands a high level of proficiency [62], an alternative ap-
proach could be the differentiation of SSCs into sperm via cell or TT 
culture (Figure 1) [10]. 

 
1. TT culture 

TT cultures have been used for the study of mammalian spermato-
genesis because the tubules and interstitial tissue preserve their spa-
tial integrity. The earliest laboratory-based report of spermatogene-
sis using rabbit TT was published in 1920; however, most of the tes-
ticular cells rapidly degenerated [63]. The first research to successfully 
produce functional mouse sperm in the laboratory was not docu-
mented until 2011 [64]. To restore human fertility, haploid sperma-
tids were injected into the oocytes of patients with azoospermia in 
1999 [65], which ultimately led to the birth of healthy offspring. Sub-
sequent studies provided possible treatments for spermatogenesis 
disorders using TT cultures with additional supplements to cure 
without genetic manipulation. One such experiment was conducted 
by Sato et al. [66] in 2012. When stem cell factor and colony stimulat-
ing factor-1 supplements were added to immature mouse testes cul-
tured on agarose gel, spermatogenesis increased significantly and 
resulted in the production of long spermatids, flagellated sperm, and 
live offspring after microinjection. Although supplements are a criti-
cal factor for SSC differentiation, they are insufficient on their own to 
generate mature human sperm in vitro. According to some studies, 
gonadotropins can induce SSCs to differentiate into primary sper-
matocytes when they are added to a culture medium containing vi-
tamins [67,68]. Furthermore, recent studies have developed dynamic 
culture systems in which TT is exposed to a continuous and con-
trolled flow of fresh culture medium [69,70]. Komeya et al. [71] re-
ported the successful 6-month maintenance of mouse spermato-
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Figure 1. In vitro maturation of testicular tissue or spermatogonial stem cells. Testis fragments can be cultured in dynamic or static systems. 
In the dynamic system, tissues are cultured with a continuous flow of fresh culture medium. In the static system, the tissues are cultured at 
the gas-liquid interface or in a hanging drop system, which requires constant changes in the environment. Isolated testicular cells can also 
be cultured in two-dimensional (2D) or three-dimensional (3D) culture systems. In 2D culture systems, testicular cells are seeded on a flat 2D 
culture surface, with or without co-culturing with other types of cells. In a 3D culture system, cells are engrafted into a 3D environment that 
allows for cell-cell or paracrine interactions. The 3D cell culture systems include porous, nanofiber, hydrogel scaffold, and organoid systems.

genesis using a microfluidic system. They also achieved healthy off-
spring following microinjection of the sperm and spermatids derived 
from the cultured testis [71]. In another study, testicular fragments of 
immature mice cultivated on agarose gel showed a lower rate of 

spermatogenesis than tissue produced in a perfusion mini-bioreac-
tor, indicating that the dynamic culture system could better simulate 
the physiological environment of the testis [72]. Yuan et al. [73] 
demonstrated that self-renewing SSCs and the organization of ma-
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ture seminiferous epithelium from in vitro organogenesis of the fetal 
gonadal ridge of human testicular in vitro-derived spermatids (from 
spermatogonia) could fertilize oocytes and support subsequent 
blastocyst formation. Although in vitro spermatogenesis using labo-
ratory organotypic cultures preserves the 3D structure and spatial ar-
rangement of TT, this method still faces a range of challenges. These 
include the need for a large volume of tissue and the ultimate loss of 
significant portions of that tissue, as well as the inability to genetical-
ly modify the candidate cells [74]. 

2. SSC culture 
To overcome some of the constraints of tissue culture and mini-

mize cell mortality caused by the scarcity of nutrition and oxygen, 
two-dimensional (2D) culture systems were developed for SSCs. In 
addition, researchers examined the addition of growth factors or the 
co-culturing of germ cells and feeder cells (such as Sertoli cells, Vero 
cells, and mouse fibroblast cells) to promote spermatogenesis 
[75,76]. Since 2D culture systems could not create cell-cell interac-
tions or the exchange of nutrients and gases for stem cell differentia-
tion, the use of 3D substrates, while maintaining normal cell mor-
phology, was proposed [77,78]. 

In recent years, a wide range of synthetic polymers (synthetic car-
bon [79,80], polycaprolactone [81], poly-L-lactic acid [82,83], polyvi-
nyl alcohol [84], polyamide [85], and glycolic acid [83]) and natural 
polymers (alginate [86,87], gelatin [88], methyl cellulose [89], colla-
gen [90,91], fibroin [92,93], chitosan [94], Matrigel [95-97], and aga-
rose [75,98]) have been used to fabricate scaffolds for the purpose of 
improving spermatogenesis. Most synthetic scaffolds were found 
unsuitable for SSC differentiation, whereas natural biomaterials 
demonstrated superior performance. In research published in 2012, 
mature mouse sperm were produced on a soft agar culture system 
(SACS) [99]. In another recent study, the completion of human sper-
matogenesis was observed on agarose gel plus a laminin supple-
ment in the presence of Sertoli cells after being cultured for 74 days 
[100]. Analysis showed that the laminin-enhanced 3D matrix sup-
ported all physiological activities of the SSCs, including survival and 
proliferation, and led to the differentiation of spermatogonial cells 
into morphological sperm. Despite this success in spermatogenesis, 
the method failed to retrieve live sperm from the culture system. 

In addition to the type of biomaterial, the scaffold synthesis ap-
proach could be important in the process of cell differentiation [101]. 
Artificial testes have been designed using various scaffolding tech-
niques (fibrous [81-83], porous [92,102], hydrogel [89,103], and 3D 
printed [104-107]). Nanofibrous scaffolds could not support sper-
matogenesis through the final stages due to their inability to simu-
late the topography of TT. Over the past decade, studies have shown 
that extracellular matrix (ECM)-based systems of decellularized TT in 

the form of testicular organoids [108-116], hydrogels [116,117], 
sponges [102], 3D systems containing ECM [111,112], and 2D and 3D 
immersion culture systems [114] lead to better survival and accumu-
lation of the SSCs for proliferation and differentiation. However, none 
of these studies revealed evidence of complete spermatogenesis. In 
our previous studies, ECM solution was used as the ioink for fabrica-
tion of a hydrogel-printed scaffold following TT decellularization 
with a hypertonic solution. Mouse sperm with tail-like structures that 
were easily separated from the surface of semi-tubular structures 
were identified 3 weeks after the cultivation of testicular cells 
[106,107]. This method can be applied to regenerate TT and restore 
fertility in human studies. Investigations into spermatogenesis cur-
rently focus on the secretions derived from lab-grown cell cultures, 
including the role of the exosomes synthesized by Sertoli cells in the 
survival [118,119] and differentiation of SSCs [120]. Another study 
also showed that epididymosomes increased the proliferation of 
SSCs in a decellularized TT-derived 3D system [121]. Multiple studies 
have reported the use of a cell-derived ECM made of a decellularized 
matrix to stimulate differentiation in a variety of stem cells [122-125]. 
Therefore, it is recommended that somatic cells from the ECM pro-
duced with decellularized TT be used to evaluate the differentiation 
of SSCs in the future.

 

Conclusions 

Spermatogenic arrest and the absence of haploid male germ cells 
are causes of infertility in men. Since infertility secondary to cancer 
treatments is rising, new methods to preserve and differentiate male 
germ cells are needed. Researchers have offered new hope in the treat-
ment of these patients by using the transplantation of SSCs and tissue 
pieces or the cell suspension-derived laboratory sperm. Sperm have 
been successfully produced on ECM-derived 3D printing scaffolds and 
SACS, which may be a step towards the creation of artificial testes. 

Although fertility restoration strategies have achieved promising 
results in animal models, these methods are currently not suitable 
for the human clinical setting due to the complexity of human sper-
matogenesis and the lack of sufficient human tissue. In addition, 
more research is required to confirm that these fertility-protection 
strategies are safe. The simplicity of in vitro cultures and the achieve-
ments obtained thus far imply that TT transplantation can be a se-
cure and effective treatment for fertility preservation. However, it is 
important to optimize this method by purifying the suspensions and 
removing lingering cancer cells, as well as increasing the number of 
SSCs in vitro before transplantation. Despite the innovations in de-
sign and fabrication technology, customization of testicular scaffolds 
is still a critical issue and should be further investigated to confirm its 
therapeutic relevance. There is reason to hope that reproductive 
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technology will soon advance through the design of new and effi-
cient systems that benefit humans. 
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