• Title/Summary/Keyword: in vitro maintenance

Search Result 109, Processing Time 0.026 seconds

Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro

  • Park, Yun-Gwi;Lee, Seung-Eun;Kim, Eun-Young;Hyun, Hyuk;Shin, Min-Young;Son, Yeo-Jin;Kim, Su-Young;Park, Se-Pill
    • Development and Reproduction
    • /
    • v.19 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/-) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/- (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF ($72.8{\pm}7.69$ and $81.2{\pm}3.56$) than D3/STO ($32.0{\pm}4.30$ and $56.0{\pm}4.90$) or D3/- ($55.0{\pm}4.64$ and $62.0{\pm}6.20$). These results suggest that MEF feeder cell layer is more suitable to mES cell culture.

Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

  • Siadat, Hakimeh;Beyabanaki, Elaheh;Mousavi, Niloufar;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS. Two regular platform dental implants, one with external connection ($Br{\aa}nemark$, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at ${\alpha}=0.05$ of significance. RESULTS. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

Anti-aging Potential of Extracts Prepared from Fruits and Medicinal Herbs Cultivated in the Gyeongnam Area of Korea

  • Shon, Myung-Soo;Lee, Yunjeong;Song, Ji-Hye;Park, Taehyun;Lee, Jun Kyoung;Kim, Minju;Park, Eunju;Kim, Gyo-Nam
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.178-186
    • /
    • 2014
  • Many recent studies have focused on maintaining a healthy life by preventing and/or postponing the aging process. Numerous studies have reported that continuous exposure to reactive oxygen species can stimulate skin aging and that excessive accumulation of fat can cause an impaired skin barrier and tissue structure alterations. Thus, the maintenance of antioxidant homeostasis and the suppression of adipose accumulation are important strategies for skin anti-aging. Here, we prepared three types of extracts [whole juice, acetone-perchloric acid (PCA), and ethanol] from 20 fruits and medicinal herbs native to the Gyeongnam area of Korea. The total phenolic content of each extract was analyzed, and we observed higher total phenolic contents in the medicinal herbs. Consistent with this, the results of the oxygen radical absorbance activity capacity assay indicated that the in vitro antioxidant activities of the medicinal herb extracts were stronger than those of the fruit extracts. The fruits and medicinal herbs had strong effects on cell-based systems, including $H_2O_2$-induced oxidative stress in human keratinocytes and 3T3-L1 lipid accumulation. Nishimura Wase persimmon, Taishu persimmon, wrinkled giant hyssop, sweet wormwood, Chinese cedar, red perilla, tan shen, hiyodori-jogo, and cramp bark may be natural anti-aging materials with effective antioxidant and anti-adipogenic activities. Taken together, our findings may provide scientific evidence supporting the development of functional foods and nutraceuticals from fruits and medicinal herbs.

Strategy for Bio-Diversity and Genetic Conservation of Forest Resources in Korea (생물종(生物種) 다양성(多樣性) 및 삼림유전자원(森林遺傳資源) 보존(保存) 전략(戰略))

  • Park, Young Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.191-204
    • /
    • 1994
  • Due to its topographic complexities and various climatical condition, Korea exhibits diverse forest types. Dominant tree species in this zone are Quercus spp., Betula spp., Zelkova spp., Fraxinus spp., Pinus densiflora, Pinus koraiensis, and Pinus thunbergii ete. Genetic conservation in forest species in Korea there are three ways ; one is in situ, other is ex situ and third is in-facility conservation. In situ conservation include that are the present status of conservation of rare and endangered flora and ecosystem, the reserved forest, the national and provincial park, and the gene pool of natural forests. Ex situ conservation means to be established the new forest from in situ forest stands, progeny and provenance test populations, seed orchard and clone banks, and gene conservation in-facility. As a tool for low temperature storage, several aspects on in vitro system were studied ; (1) establishment of in vitro cultures from juvenile and/or rejuvenated tissues, (2) induction of multiple shoots from the individual micropropagules, (3) elongation of the proliferated shoots. Studies on cold storage for short-and long-term maintenance of in vitro cultures under $4^{\circ}C$ in the refrigerator were conducted. For the cryopreservation at $-196^{\circ}C$, various factors affecting survivability of the plant materials are being examined. The necessity of gene conservation of forest trees is enlarged not only to increase the adaptability for various environments but also to gain the breeding materials in the future. For effective gene conservation of forest trees, I would like to suggest followings ; 1. Forest stands reserved for other than the gene conservation purposes such as national parks should be investigated by botanical and gene-ecological studies for selecting bio-diversity and gene conservation stands. 2. Reserved forest for gene pool should be extented both economically important tree spp. and non-economical species. 3. Reserved forest for progeny test and clone bank should be systematically investigated for the use of Ex situ forest gene conservation. 4. We have to find out a new methodology of genetic analysis determining the proper and effective size of subpopulation for in situ gene conservation. 5. We should develop a new tree breeding systems for successful gene conservation and utilization of the genetic resources. 6. New method of in-facility gene conservation using advanced genetic engineering should be developed to save time and economic resources. 7. For the conservation of species with short-life span of seed or shortage of knowledge of seed physiology, tissue culture techniques will be played a great role for gene conservation of those species. 8. It is are very useful conservation not only of genes but of genotypes which were selected already by breeding program. 9. Institutional and administrative arrangements including legistlation must be necessarily taken for gene conservation of forest trees. 10. It is national problems for conservation of forest resources which have been rapidly destroyed because of degenerating environmental condition and of inexperienced management system of bio-diversity and gene conservation. 11. In order to international cooperation for exchanging data of bio-diversity and gene conservation, we should connect to international net works as soon as possible.

  • PDF

Stability of Human Centromeric Alphoid DNA Repeat during Propagation in Recombination-Deficient Yeast Strains (효모의 재조합 변이주를 이용한 인간 Centromeric Alphoid DNA Repeat의 안정성에 관한 연구)

  • Kim, Kwang-Sup;Shin, Young-Sun;Lee, Sang-Yeop;Ahn, Eun-Kyung;Do, Eun-Ju;Park, In-Ho;Leem, Sun-Hee;SunWoo, Yang-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.243-249
    • /
    • 2007
  • The centromere is a highly differentiated structure of the chromosome that fulfills a multitude of essential mitotic and meiotic functions. Alphoid DNA (${\alpha}$-satellite) is the most abundant family of repeated DNA found at the centromere of all human chromosomes, and chromosomes of primates in general. The most important parts in the development of Human Artificial Chromosomes (HACs), are the isolation and maintenance of stability of centromeric region. For isolation of this region, we could use the targeting hook with alphoid DNA repeat and cloned by Transformation-Associated Recombination (TAR) cloning technique in yeast Saccharomyces cerevisiae. The method includes rolling-circle amplification (RCA) of repeats in vitro to 5 kb-length and elongation of the RCA products by homologous recombination in yeast. Four types of $35\;kb{\sim}50\;kb$ of centromeric DNA repeat arrays (2, 4, 5, 6 mer) are used to examine the stability of repeats in homologous recombination mutant strains (rad51, rad52, and rad54). Following the transformation into wild type, rad51 and rad54 mutant strains, there were frequent changes in inserted size. A rad52 mutant strain showed extremely low transformation frequency, but increased stability of centromeric DNA repeat arrays at least 3 times higher than other strains. Based on these results, the incidence of large mutations could be reduced using a rad52 mutant strain in maintenance of centromeric DNA repeat arrays. This genetic method may use more general application in the maintenance of tandem repeats in construction of HAC.

In vitro micropropagation of radish (Raphanus sativus L.) using callus induction and plant regeneration (캘러스 유기와 식물체 재분화를 이용한 무의 기내 대량증식)

  • You Kyoung Kim;Sug Youn Mo;Su Bin Choi;Han Yong Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.155-162
    • /
    • 2023
  • Radish (Raphanus sativus L.), a root vegetable grown worldwide, is consumed in several ways. In the cross between parental lines to produce F1 seeds of radish, the problem of low purity may arise because of pollen contamination. Therefore, we aimed to establish conditions for callus induction and regeneration so that in vitro cultured plants could be used for the propagation of stock seeds. The most effective hormone combination containing various concentrations of 2,4-D, TDZ, and kinetin was selected for callus induction using radish hypocotyl, and the induced calli were transferred to two types of hormone media to investigate the optimal conditions for shoot regeneration of the callus. The combination of 1 mg/L 2,4-D + 0.05 mg/L kin was the most effective for callus induction of RA2 and RA10, 1 mg/L 2,4-D + 0.1 mg/L kin + 0.025 mg/L TDZ of RA4, and 1 mg/L 2,4-D + 0.2 mg/L kin of RA30. Shoot regeneration of the RA4 callus occurred in both shoot regeneration media, but the frequency was much higher in the 5H+1B medium (1 mg/L NAA + 0.1 mg/L 2,4-D + 1 mg/L IPA + 0.02 mg/L GA3 + 2 mg/L zeatin + 1 mg/L BA). For the in vitro micropropagation of radish, the conditions selected in this study can assist in the propagation and maintenance of stock seeds to produce F1 seeds.

The Effects of Feeding Acacia saligna on Feed Intake, Nitrogen Balance and Rumen Metabolism in Sheep

  • Krebs, G.L.;Howard, D.M.;Dods, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1367-1373
    • /
    • 2007
  • The aim of this study was to determine the feeding value to sheep of Acacia saligna grown under temperate conditions. Pen trials were undertaken to determine the effects of feeding A. saligna, which had been grown in a Mediterranean environment, on feed intake, nitrogen balance and rumen metabolism in sheep. Sheep were given ad libitum access to A. saligna with or without supplementation with PEG 4,000 or PEG 6,000. PEG 4000 appears to be the major detannification agent used in trials involving high tannin feed despite the fact that PEG 6000 has been shown to be more effective, in vitro. For this reason it was of interest to compare the two, in vivo. Dry matter intake was greater (p<0.05) in sheep supplemented with either PEG 4,000 or PEG 6,000 compared to the control. There was no difference, however, in intake between those supplemented with either PEG 4,000 or 6,000. Although animals were not weighed throughout the trial, a loss in body condition was obvious, in particular in the control group. Intake of N was greater (p<0.05) in sheep supplemented with either PEG 4,000 or PEG 6,000 than in the control. There was no difference in N intake between those supplemented with either PEG 4,000 or PEG 6,000. There were no significant differences in either the faecal or urinary N output between any of the treatment groups and all treatment groups were in negative N balance. Neither the average nor maximum pH of ruminal fluid of the control group was different to those supplemented with PEG. The minimum pH for the control group, however, was significantly higher (p<0.05) than for either of the PEG treatments. The average and the maximum ammonia levels were lower (p<0.05) in the control group compared with those in either of the PEG treatment groups. For all dietary treatments ruminal ammonia levels were well below the threshold for maximal microbial growth. Feeding A. saligna, without PEG, had a definite defaunating effect on the rumen. For all dietary treatments ruminal ammonia levels were well below the threshold for maximal microbial growth. It was concluded that A. saligna was inadequate as the sole source of nutrients for sheep, even with the addition of PEG 4,000 or PEG 6,000. The anti-nutritional effects on the animals were largely attributed to the excessive biological activity of the phenolics in the A. saligna leaves. There is a need to determine other supplements that may be complimentary with PEG to enhance the nutritive value of A. saligna to maintain a minimum of animal maintenance.

Specific Localization of DNMT1 in Mouse and Bovine Preimplantation Embryos

  • Y.M.Chang;Min, K.S.;Yoon, J.T.;M.G.Pang;Chung, Y.C.;Kim, C.K.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.81-81
    • /
    • 2003
  • DNA methylation is a covalent modification of DNA that can modulate gene expression and is now recognized as a major component of the epigenome. During evolution, the dinucleotide CpG has been progressively eliminated from the genome of higher eukaryotes and is present at only 5% to 10% of its predicted frequency. Approxymately 80% of the remaining CpG sites contain methylated cytosines in most vertebrates and they are distributed in a pattern that is unique in each tissue and is inversely correlated with gene expression. The pattern of methylation is faithfully maintained during cell division by the enzyme Dnmt1, the maintenance DNA methyltransferase, which catalyzes the transfer of a methyl group from S-adenosyl-methionine to the 5'-position of the cytosine ring. We have been identified bovine Dnmt1 cDNA full-length recently (AY173048) Little is known on the functions of Dnmt1 in bovine preimplantation embryos. Thus, we analyzed the specific pattern of Dnmt1 in in vitro derived/nuclear transfer bovine and in vivo derived mouse embryos to monitor the epigenetic reprogramming process. We investigated these process by using indirect immunofluresence with an antibody to Dnmt1. According to other studies, Dnmt1 accumulates in nuclei of early growing oocytes but is sequestered in the cytoplasm of mature oocytes. In 2-cell and 4-cell embryos, Dnmt1 is cytoplasmic, but at the 8-cell stage, it is present only in the nucleus. By the blastocyst stage, Dnmt1o is again found only in the cytoplasm. Thus, nuclear localization of Dnmt1o in preimplantation embryos is limited to the 8-cell stages After implantation, Dnmt1 is localized in the nucleus in mouse. However, we have found different patterns of Dnmt1 nuclear localization. Though we used the common antibody, immune-localization data revealed that Dnmt1 antibody have been detected at the nucleus in 1-cell to blastocyst embryos. Therefore, maybe we think that the functions of Dnmt1 between bovine and mice are different. In order to Identify the mechanisms that regulate DNA methylation in bovine preimplantation embryo, we have plans on using bovine oocyte and somatic specific Dnmt1 antibodies.

  • PDF

CHANGING THE ANIMAL WORLD WITH NIR : SMALL STEPS OR GIANT LEAPS\ulcorner

  • Flinn, Peter C.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1062-1062
    • /
    • 2001
  • The concept of “precision agriculture” or “site-specific farming” is usually confined to the fields of soil science, crop science and agronomy. However, because plants grow in soil, animals eat plants, and humans eat animal products, it could be argued (perhaps with some poetic licence) that the fields of feed quality, animal nutrition and animal production should also be considered in this context. NIR spectroscopy has proved over the last 20 years that it can provide a firm foundation for quality measurement across all of these fields, and with the continuing developments in instrumentation, computer capacity and software, is now a major cog in the wheel of precision agriculture. There have been a few giant leaps and a lot of small steps in the impact of NIR on the animal world. These have not been confined to the amazing advances in hardware and software, although would not have occurred without them. Rapid testing of forages, grains and mixed feeds by NIR for nutritional value to livestock is now commonplace in commercial laboratories world-wide. This would never have been possible without the pioneering work done by the USDA NIR Forage Research Network in the 1980's, following the landmark paper of Norris et al. in 1976. The advent of calibration transfer between instruments, algorithms which utilize huge databases for calibration and prediction, and the ability to directly scan whole grains and fresh forages can also be considered as major steps, if not leaps. More adventurous NIR applications have emerged in animal nutrition, with emphasis on estimating the functional properties of feeds, such as in vivo digestibility, voluntary intake, protein degradability and in vitro assays to simulate starch digestion. The potential to monitor the diets of grazing animals by using faecal NIR spectra is also now being realized. NIR measurements on animal carcasses and even live animals have also been attempted, with varying degrees of success, The use of discriminant analysis in these fields is proving a useful tool. The latest giant leap is likely to be the advent of relatively low-cost, portable and ultra-fast diode array NIR instruments, which can be used “on-site” and also be fitted to forage or grain harvesters. The fodder and livestock industries are no longer satisfied with what we once thought was revolutionary: a 2-3 day laboratory turnaround for fred quality testing. This means that the instrument needs to be taken to the samples rather than vice versa. Considerable research is underway in this area, but the challenge of calibration transfer and maintenance of instrument networks of this type remains. The animal world is currently facing its biggest challenges ever; animal welfare, alleged effects of animal products on human health, environmental and economic issues are difficult enough, but the current calamities of BSE and foot and mouth disease are “the last straw” NIR will not of course solve all these problems, but is already proving useful in some of these areas and will continue to do so.

  • PDF

Integrative analysis of microRNA-mediated mitochondrial dysfunction in hippocampal neural progenitor cell death in relation with Alzheimer's disease

  • A Reum Han;Tae Kwon Moon;Im Kyeung Kang;Dae Bong Yu;Yechan Kim;Cheolhwan Byon;Sujeong Park;Hae Lin Kim;Kyoung Jin Lee;Heuiran Lee;Ha-Na Woo;Seong Who Kim
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.281-286
    • /
    • 2024
  • Adult hippocampal neurogenesis plays a pivotal role in maintaining cognitive brain function. However, this process diminishes with age, particularly in patients with neurodegenerative disorders. While small, non-coding microRNAs (miRNAs) are crucial for hippocampal neural stem (HCN) cell maintenance, their involvement in neurodegenerative disorders remains unclear. This study aimed to elucidate the mechanisms through which miRNAs regulate HCN cell death and their potential involvement in neurodegenerative disorders. We performed a comprehensive microarray-based analysis to investigate changes in miRNA expression in insulin-deprived HCN cells as an in vitro model for cognitive impairment. miR-150-3p, miR-323-5p, and miR-370-3p, which increased significantly over time following insulin withdrawal, induced pronounced mitochondrial fission and dysfunction, ultimately leading to HCN cell death. These miRNAs collectively targeted the mitochondrial fusion protein OPA1, with miR-150-3p also targeting MFN2. Data-driven analyses of the hippocampi and brains of human subjects revealed significant reductions in OPA1 and MFN2 in patients with Alzheimer's disease (AD). Our results indicate that miR-150-3p, miR-323-5p, and miR-370-3p contribute to deficits in hippocampal neurogenesis by modulating mitochondrial dynamics. Our findings provide novel insight into the intricate connections between miRNA and mitochondrial dynamics, shedding light on their potential involvement in conditions characterized by deficits in hippocampal neurogenesis, such as AD.