• Title/Summary/Keyword: in vitro Differentiation

Search Result 751, Processing Time 0.027 seconds

Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins

  • Mira Hammad;Alexis Veyssiere;Sylvain Leclercq;Vincent Patron;Catherine Bauge;Karim Boumediene
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.304-314
    • /
    • 2023
  • Background and Objectives: Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results: In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions: We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.

Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model

  • Park, Chan-Mi;Kim, Hye-Min;Kim, Dong Hyun;Han, Ho-Jin;Noh, Haneul;Jang, Jae-Hyuk;Park, Soo-Hyun;Chae, Han-Jung;Chae, Soo-Wan;Ryu, Eun Kyoung;Lee, Sangku;Liu, Kangdong;Liu, Haidan;Ahn, Jong-Seog;Kim, Young Ock;Kim, Bo-Yeon;Soung, Nak-Kyun
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.855-861
    • /
    • 2016
  • Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-${\kappa}B$ ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health.

Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells (영구치 치수 기질세포를 이용한 연골 분화 및 분화 시기에 따른 형태학적 변화)

  • Chung, Choo-Ryung;Kim, Ha-Na;Park, Yeul;Kim, Min-Jeong;Oh, Young-Ju;Shin, Su-Jung;Choi, Yoon-Jeong;Kim, Kyung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Objectives: The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods: Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results: Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions: Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day) of differentiation.

Anti-adipogenic Effect of Hydrolysate Silk Fibroin in 3T3-L1 Cells

  • Chon, Jeong-Woo;Lee, Kwang-Gill;Park, Yoo-Kyoung;Park, Kyung-Ho;Yeo, Joo-Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • Hydrolysate silk fibroin (HSF) is a fibrous protein composed of parallel $\beta$-structures and is made from pure silk elements including 18 amino acids, with glycine, alanine, and serine comprising of over 80% of the amino acids. Numerous studies have documented a range of effects of HSF, including moisturizing, antioxidant activity, nervous system disorders, and many more. We investigated whether HSF has anti-obesity effects in vitro. The effects of HSF inhibition on lipid accumulation and acceleration of lipid degradation in 3T3-L1 cells were studied. Treatment of 3T3-L1 cells with HSF caused significant inhibition of cell viability, an increase in glycerol release, and a decreased in adipocyte differentiation. Moreover HSF stimulated downregulated of adipogenic enzyme expressions (PPAR${\gamma}$ and C/EBP${\alpha}$) and up-regulated of fatty oxidation enzyme expressions (CPT-1 and UCP-2). Based on these results, hydrolysate silk fibroin can be suggested as a potential therapeutic substance as part of a prevention or treatment strategy for obesity.

Stem cell-derived exosomes for dentin-pulp complex regeneration: a mini-review

  • Dina A. Hammouda;Alaa M Mansour;Mahmoud A. Saeed;Ahmed R. Zaher;Mohammed E. Grawish
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

EFFECT OF DEXAMETHASONE CONCENTRATIONS ON OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS (배양된 인간 골막기원세포의 조골활성에 대한 덱사메타손 농도의 효과)

  • Kim, Jong-Ryoul;Park, Bong-Wook;Lee, Chang-Il;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.287-293
    • /
    • 2009
  • Long-term treatment with glucocorticoid leads to the development of osteoporosis and osteonecrosis. In contrast to the marked inhibitory effect of pharmacological doses of glucocorticoids on bone formation, the relationship between physiological concentrations of glucocorticoids and osteoprogenitor cell proliferation and phenotypes has not been elucidated yet. In addition, the effects of dexamethasone treatment on the proliferation and osteoblastic differentiation of osteoprogenitor cells are also controversial. The purpose of this study was to examine the effects of dexamethasone on the proliferation and osteoblastic differentiation of periosteal-derived cells. Periosteal-derived cells were obtained from mandibular periosteums and introduced into the cell culture. After passage 3, the cells were further cultured for 21 days in the osteogenic induction medium with different dexamethasone concentrations of 0, 10, and 100 nM. The proliferation and osteoblastic phenotypes of periosteal-derived cells were promoted in dexamethasone-treated cells than in untreated cells. Among the dexamethasone-treated cells, cell proliferation was slightly greater in 10 nM dexamethasone-treated cells than in 100 nM dexamethasone-treated cells. Histochemical staining and the bioactivity of alkaline phosphatase (ALP) were higher in 100 nM dexamethasone-treated cells than in 10 nM dexamethasone-treated cells. Similarly, von Kossa-positive mineralization nodules and calcium content were also more evident in 100 nM dexamethasone-treated cells than in 10 nM dexamethasone-treated cells. These results suggest that dexamethasone enhances the in vitro osteoblastic differentiation of periosteal-derived cells. The present study also demonstrates that higher dexamethasone concentrations reduce the in vitro proliferation of periosteal-derived cells.

Differentiation of human male germ cells from Wharton's jelly-derived mesenchymal stem cells

  • Dissanayake, DMAB;Patel, H;Wijesinghe, PS
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • Objective: Recapitulation of the spermatogenesis process in vitro is a tool for studying the biology of germ cells, and may lead to promising therapeutic strategies in the future. In this study, we attempted to transdifferentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into male germ cells using all-trans retinoic acid and Sertoli cell-conditioned medium. Methods: Human WJ-MSCs were propagated by the explant culture method, and cells at the second passage were induced with differentiation medium containing all-trans retinoic acid for 2 weeks. Putative germ cells were cultured with Sertoli cell-conditioned medium at $36^{\circ}C$ for 3 more weeks. Results: The gene expression profile was consistent with the stage-specific development of germ cells. The expression of Oct4 and Plzf (early germ cell markers) was diminished, while Stra8 (a premeiotic marker), Scp3 (a meiotic marker), and Acr and Prm1 (postmeiotic markers) were upregulated during the induction period. In morphological studies, approximately 5% of the cells were secondary spermatocytes that had completed two stages of acrosome formation (the Golgi phase and the cap phase). A few spermatid-like cells that had undergone the initial stage of tail formation were also noted. Conclusion: Human WJ-MSCs can be transdifferentiated into more advanced stages of germ cells by a simple two-step induction protocol using retinoic acid and Sertoli cell-conditioned medium.

AN EXPERIMENTAL STUDY ON THE STIMULATORY EFFECTS OF EPIDERMAL GROWTH FACTOR AND TRANSFORMING GROWTH FACTOR-α ON THE GROWTH OF SQUAMOUS CANCER CELL LINES (Epidermal Growth Factor 와 Transforming Growth Factor-α가 인체 구강편평상피세포암 세포의 성장에 미치는 영향에 관한 실험적 연구)

  • Park, Young-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.4
    • /
    • pp.334-340
    • /
    • 1998
  • Stimulatory effects of epidermal growth factor (EGF) and transforming growth $factor-{\alpha}$($TGF-{\alpha}$) on the growth of squamous cancer cell lines established from human oral cancer tissue with moderate differentiation were studied in vitro. After culturing in serum-free media for 24 hours, growth factors-EGF only, $TGF-{\alpha}$ only and EGF, $TGF-{\alpha}$ together-were added to the media and numbers of cells were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and compared with the control at 96, 144 hours. Each of EGF and $TGF-{\alpha}$ showed statistically significant stimulatory effects on the growth of cells respectively. Dose-dependent relationship of the stimulatory effects were not clearly demonstrated. The effects of EGF were higher than those of $TGF-{\alpha}$ and combinative administration showed higher effects than those of single uses. In conclusion, EGF may play an important and major role in differentiation and growth of human oral squamous cancer cells. $TGF-{\alpha}$, produced from cells activated by EGF, also can stimulate the cell growth and could be an alternative ligand for EGF receptor.

  • PDF

Effect of Insulin on Differention of Chick Embryonic Neuroblasts Cultured in vitro (배양 계배 신경아세포의 분화에 미치는 insulin의 영향)

  • 이창호;최덕영;박혜경;곽규봉;김혜선;정진하;하두봉
    • The Korean Journal of Zoology
    • /
    • v.34 no.2
    • /
    • pp.209-216
    • /
    • 1991
  • To examine the effed of Insulin on neuronal differentiation, telencephalic neuroblasts from chick embryonic brains were cultured in a serum-free medium. Indirect immunofluorescence microscopic studies revealed that the spedfic protein, MAP-2, was localized in both cell bodies and neurites of developing neuroblasts. Furthermore, treatinent of increasing concentration of Insulin promoted the MAP-2 synthesis as well as the neurite outgrowth activity. Thus, the enhancement of the morphological and biochemical parameters for neuronal differentiation appears to he closely correlated, and the neurotrophic effect of insulin may play a crucial role in neuronal process formation.

  • PDF